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Abstract

A new direct-space method for ab initio solution of
crystal structures from powder diffraction diagrams is
presented. The approach consists of a combined global
optimization (`Pareto optimization') of the difference
between the calculated and the measured diffraction
pattern and of the potential energy of the system. This
concept has been tested successfully on a large variety of
ionic and intermetallic compounds.

1. Introduction

In recent decades, the determination of the atomic
structure of crystalline solids has become a routine
process using single-crystal X-ray diffraction. Never-
theless, even today structure determination can become
rather dif®cult if the compound under investigation can
only be prepared as a microcrystalline powder. Several
methods for solving crystal structures from powder
diffraction data have been developed (Harris &
Tremayne, 1996; LoueÈr, 1998; Meden, 1998). One of the
®rst methods was developed by Rietveld (1969) in the
late sixties. This approach has become an integral part of
almost any powder crystal structure determination,
though it actually addresses only the last step in the
structure determination process consisting of ®ve steps:
(i) determination of peak positions from the raw
diffraction data; (ii) indexing, calculation of lattice
parameters, and determination of crystal symmetry and
space group (if possible); (iii) extraction of intensities;
(iv) structure solution (creation of a structural model
with approximate atomic positions); (v) Rietveld
re®nement (re®nement of the atomic positions). Steps
(i)±(iii) and (v) are fairly routine nowadays, a number of
computer programs being available for their imple-
mentation. Routines that extract information from
diffraction data [steps (i)±(iii)] are included in many
operating software packages for diffractometry [e.g.
STADIP (Stoe), X'pert (Philips), DIFFRACplus

(Bruker), etc.]. The Rietveld re®nement method has
also been implemented in a variety of programs, such
as GSAS (Larson & Von Dreele, 1987), FullProf

(Rodriguez-Carvajal, 1990) and DBWS (Wiles & Young,
1981). They can generally be used in a fairly routine
manner (McCusker et al., 1999).

However, one of the main problems associated with
the Rietveld method is its implicit use of local optimi-
zation of the atomic positions. Thus, it depends on the
availability of a structural model, i.e. an approximate
idea of what the atomic arrangement should be.
Providing such a model from a powder diffraction
pattern [step (iv) in the list above] remains a dif®cult
task in general. In some cases, the analogy to existing
compounds and their structures allows a relatively
simple construction of a model, but in many other cases
this is not possible.

Several approaches that address this problem have
been developed since the publication of the Rietveld
method in 1969. Usually, they generate a structural
model `ab initio' (i.e. without any previous knowledge
concerning the structure) from a powder diffraction
pattern that is subsequently submitted to a Rietveld
re®nement. Most of these methods [especially the
`classical' direct methods (Giacovazzo, 1996), the
Patterson method (Patterson, 1934) and the method of
maximum entropy and likelihood (Bricogne, 1991), but
also some other approaches, e.g. FOCUS (Grosse-
Kunstleve et al., 1997)] consider intensity values for each
re¯ection (hkl), more or less in analogy to single-crystal
methods. Unfortunately, the extraction of the intensities
I(hkl) from the experimental diffraction pattern I(2�) as
a function of the scattering angle 2� quite frequently
poses serious problems because of the ambiguity arising
from the intensity overlap of different re¯ections (hkl)
at the same value of 2�. Though a variety of sophisti-
cated techniques (Pawley, 1981; Le Bail et al., 1988) have
been developed for the extraction of I(hkl) from over-
lapping re¯ections, it may be dif®cult to determine these
intensity values with suf®cient accuracy for the `classical'
methods to be applicable. The so-called `direct-space
methods' avoid this problem by proposing structural
models independent of the powder diffraction diagrams
(Harris & Tremayne, 1996; LoueÈr, 1998; Andreev et al.,
1997; Harris et al., 1998; Shankland et al., 1997). Such a
model is subsequently validated by comparing the
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calculated and the experimental powder patterns with
respect to I(2�). These values are readily obtained from
experimental powder diffraction data of suf®cient
quality.

In general, direct-space methods work as follows.
Beginning with some arbitrarily chosen starting con®g-
uration, the difference between the calculated and the
measured diffraction patterns �Iexp/calc(2�) (cost func-
tion) is minimized through a repeated change of the
atomic arrangement while the unit cell is kept ®xed. If
no other constraints are introduced, this straightforward
prescription [also known as the `Reverse Monte Carlo'
method (Kaplow et al., 1968; McGreevy, 1997)] is in
practice limited by the fact that for most crystalline
solids the system quickly becomes trapped in some
minimum that does not correspond to a physically
reasonable atomic arrangement. The reason for this lies
in the `landscape' of the cost function, which includes
numerous deep local minima (McGreevy, 1997). In
order to avoid these traps, certain additional constraints
are required, which restrict the available con®guration
space to physically reasonable atomic arrangements.

Fortunately, the physically reasonable region of
con®guration space has been the subject of investigation
in the ®eld of crystal structure prediction (Catlow et al.,
1994; Bush et al., 1995; SchoÈ n & Jansen, 1996). Nearly all
of these methods use optimization of the atomic
arrangement with regard to elaborate cost functions
[mostly potential energy (Bush et al., 1994; SchoÈ n &
Jansen, 1994, 1995; Battle et al., 1995; Putz et al., 1998),
but also deviation of crystal chemistry rules (Pannetier
et al., 1990) and others] in order to detect the global
minimum and hence the crystal structure of the system.
Furthermore, some approaches (SchoÈ n & Jansen, 1994,
1995) extend the global optimization to the shape and
content of the unit cell.

Unfortunately, most methods for structure prediction
still suffer from the lack of really adequate cost func-
tions. Nevertheless, they might be of use even at their
current state concerning the problem of crystal structure
determination from powder diffraction data, if these
data and the knowledge of the unit cell and its content
are regarded as additional information for the global
optimization.

2. Method

2.1. Concept

In order to avoid the traps mentioned above, our
concept for crystal structure solution from powder
patterns consists of a combined global optimization
(`Pareto optimization')² of the difference between the

calculated and the measured diffraction pattern and of
the potential energy of the system. Size, shape and
content of the unit cell are assumed to be known from
experiment.

`Merging' both hypersurfaces³ weakens or even
eliminates the minima that belong to only one of the two
surfaces, and strengthens those which belong to both of
them. Therefore, a suf®ciently long global optimization
run should sooner or later reach the global minimum of
the system corresponding to the correct crystal struc-
ture.

The combined cost function C is calculated as

C � �Epot � �1ÿ ��RB; �1�

where Epot is the potential energy of the atomic
arrangement (cf. x2.3) and RB denotes the so-called R
value (Harris & Tremayne, 1996) frequently used for the
comparison of calculated and experimental diffraction
patterns (cf. x2.3). � is the Pareto parameter which
weights the contributions of the two parts of the cost
function. The best choice for � may vary from problem
to problem. This parameter can be used to weaken the
in¯uence of either a low-quality diffraction pattern or a
very crude potential on the overall cost function. Thus, a
powder pattern in which the intensity values are
suspected to be not very accurate may be balanced by a
good potential by choosing a larger � value, and vice
versa. Nevertheless, a value of � = 0.5 has been shown to
be a good starting point for most systems.

2.2. Simulated annealing

As mentioned above, the atomic arrangement repre-
senting the solved crystal structure is supposed to
correspond to the global minimum of the multi-
dimensional hypersurface of the cost function. Hence, a
global optimization method operating on the atomic
coordinates should be able to solve the structure. One of
the most common algorithms for global optimization is
the so-called `simulated annealing' algorithm (Kirkpa-
trick et al., 1983). The great advantage of this method
lies in the relative ease of implementation and the very
general applicability, more or less regardless of the
speci®c optimization problem. Simulated annealing is a
Monte Carlo method based on the Metropolis algorithm
(Metropolis et al., 1953) which implements a weighted
random walk through con®guration space.

Starting from a current con®guration i, a neigh-
bouring con®guration i + 1 is chosen at random
according to a set of rules (`move class'). If the cost
function Ci+1 is below or equal to Ci, the move is always
accepted, i.e. i + 1 becomes the new current con®gura-
tion. Otherwise, the move is only accepted with prob-
ability exp [ÿ(Ci+1 ÿ Ci)/K], where K is a control² The idea of a combined optimization of two (or even more) cost

functions (`multi-objective' or `multicriteria' optimization) was ®rst
developed by V. Pareto in the ®eld of economics in the late 19th
century (Pareto, 1896/97).

³ Both cost functions depend on all atomic coordinates in the ®xed
unit cell.
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parameter of the random walk. Thus, during a sequence
of such Monte Carlo steps, the system can climb over
barriers of the hypersurface of the cost function,
depending on the control parameter K. In analogy to the
parameter `temperature' in the annealing of a real
material, starting from a relatively high value the control
parameter is slowly reduced according to a certain
schedule (the so-called `temperature program'), until
the system ends up in a deep-lying minimum. It can be
shown that an ergodic system will reach the global
minimum during such a simulated annealing run for
t!1 (van Laarhoven & Aarts, 1987; van Laarhoven,
1988).

2.3. Potential-energy calculation

In principle, any method for the calculation of the
potential energy Epot can be employed, but the global
optimization usually makes ab initio energy calculations
not feasible. With regard to those test structures that can
more or less be considered as ionic compounds, a simple
empirically parametrized two-body potential is chosen:

Epot � 1
2

P
i;j

�e2=4�"0��qiqj=dij� � �dmin
ij =dij�12: �2�

The Coulomb interactions resulting from atomic charges
qi are calculated using the Ewald sum according to De
Leeuw's method (De Leeuw et al., 1980). dij is the
distance between the two atoms i and j, and dmin

ij is a
parameter indicating the minimum observed distance
between the two atom types. These values may be
readily obtained from the ICSD (Bergerhoff et al., 1996;
Brandenburg, 1989) or even common chemical knowl-
edge, thus leading to a pronounced simple and trans-
parent parametrization of the potential.

Alternatively, better potentials, like Buckingham or
Lennard±Jones potentials, may be used in addition to
the Coulomb interactions, provided that adequate
potential parameters are available for the compound
under investigation. Missing parameters can be obtained
by ®tting to known crystal structures of similar
compounds using, e.g., the well known crystal-lattice
code GULP (Gale, 1993). A better and more accurate
potential function makes the solution of the crystal
structure easier for compounds for which only relatively
raw diffraction data are available.

For most intermetallic compounds, a simple repulsion
function parametrized with minimum interatomic
distances dmin

ij can be employed for the purpose of
structure solution. E0, containing the details of the
attractive interaction of polarizable ion cores in an
electron gas, is set equal to a constant (= 0):

Epot � 1
2

P
i;j

E
rep
ij � E0; �3�

E
rep
ij �

0 if dij � dmin
ij

�dmin
ij =dij�6 ÿ 1 if dij< dmin

ij

�
: �4�

This simple `potential' may also be used as a `penalty'
type function prohibiting unphysically short atom±atom
distances for any chemical system if no adequate
potential is known, requiring, however, that a relatively
high-quality diffraction pattern is available.

2.4. Comparison of experimental and calculated diffrac-
tion patterns

The following prescription for the calculation of the
residual value RB in equation (1) avoids the often
ambiguous extraction of intensity values I(hkl) from the
experimental diffraction pattern:

RB � 100
P
2�

jIexp�2�� ÿ Icalc�2��j
�P

2�

Iexp�2��: �5�

The intensity values Iexp(2�) may be readily calculated
from a diffraction pattern of suf®cient quality using
standard powder diffraction software. Since it is
assumed that the given unit cell corresponds to the
Bragg angles 2� in the peak-list ®le (possibly calculated
from the unit cell after indexing), any remaining small
deviations between the observed and the calculated 2�
values are balanced by assigning the observed intensity
values Iexp to the next calculated Bragg peak position
(2�). Thus, the problem of an appreciable increase in the
RB value caused by deviations between the experimental
and the calculated peak positions is avoided.

The ®rst step for the evaluation of Icalc(2�) is the
calculation of intensities Icalc(hkl) from the current
atomic arrangement (con®guration):

Icalc�hkl� � S Lp jF�hkl�j2: �6�
S is a scaling factor that is chosen in such a way that the
sum of the intensities both of the calculated and of the
measured diffraction pattern are equal. Lp is the
common Lorentz±polarization factor which depends on
the geometry of the diffractometer (Kasper & Lonsdale,
1959). For example, for Debye±Scherrer geometry

Lp � �1� cos2 2��=2 sin2 � cos �: �7�
F(hkl) is the structure factor for each possible Bragg
re¯ection (hkl). The F(hkl) are calculated from the
given cell parameters and the fractional atomic coordi-
nates (xj, yj, zj) of all atoms j in the unit cell, i.e. no
crystal symmetry other than translational symmetry is
assumed (space group P1):

F�hkl� � exp�ÿB sin2 ��hkl�=�2�
�P

j

fj exp�2�i�hxj � kyj � lzj��: �8�

As in most cases the overall atomic temperature factor B
is unknown at the beginning of the optimization process,
it should be adapted after each optimization step in
order to achieve the best possible agreement between
the calculated and the experimental powder pattern. � is
the wavelength of the X-ray (or neutron) radiation,



H. PUTZ, J. C. SCHOÈ N AND M. JANSEN 867

and fj is the atomic form factor (or scattering length) of
atom j.

The Icalc(hkl) values obtained from equation (6) are
subsequently transformed into Icalc(2�). This is achieved
by adding all those intensities Icalc(hkl) for each of which
the 2�(hkl) value lies in the interval (2� ÿ ��, 2� + ��):

Icalc�2�� �
P
hkl

J�hkl; 2�� �9�

where

J�hkl; 2�� �
0; 2��hkl�< 2�ÿ��
Icalc�hkl�; 2�ÿ�� � 2��hkl� � 2����
0; 2��hkl�> 2����

8<: :

�10�
�� corresponds to the resolution of the diffractometer
in 2�; in our test cases we assumed a rather low value of
�� = 0.01. This value is more or less typical for good
synchroton measurements and rather low for conven-
tional laboratory X-ray diffraction equipment.
However, the choice of this value proved to be not
overly critical: minor changes have generally no signi®-
cant in¯uence on the results of most calculations.

3. Implementation and testing

3.1. Implementation

The method described in the preceding section was
implemented in our program Endeavour. It consists of a
Windows2-based graphical user interface and a sepa-
rate program (Endeavour-kernel) that actually performs
the calculation and may be run on any workstation or
PC. In the following a more detailed description of
structure determination from raw powder diffraction
data employing Endeavour is given.

The ®rst step when beginning with the raw data set
obtained from the diffractometer is to locate the peaks
and extract their intensities as a function of the
diffraction angle 2�. Afterwards, this peak list is
submitted to an indexing program [e.g. ITO (Visser,
1969), TREOR (Werner et al., 1985) or DICVOL
(Boultif & Louer, 1991)] in order to obtain the unit-cell
parameters. The number of formula units per unit cell is
then calculated from Biltz space increments (Biltz, 1934)
or atomic radii.

These preliminary steps are de®nitely necessary when
new crystal structures have to be solved; however, we
omitted them in most cases, because all test structures
for our method were previously known.

The input to our program (presuming that appro-
priate minimum interatomic distances or potential
parameters are already present in the program's data-
base) consists of the peak list (intensity versus 2� for all
observed re¯ections), the composition and the number
of formula units per unit cell, and a keyword concerning
the `chemistry' of the compound, i.e. whether it may be

roughly described as an ionic or metallic compound.
This keyword is used by the program in order to set
some standard parameter settings, reducing the neces-
sary input to an absolute minimum in general. However,
all parameters may be set independently if necessary.
The optimization may last between a few minutes for
small structures, like rutile, to a couple of days for large
unit cells containing many dozens of independent atoms.

Subsequently, the symmetries and the space group of
the output structural model can be determined using the
programs SFND (Hundt et al., 1999) and RGS
(Hannemann et al., 1998), respectively. Finally, the
model may be submitted to a Rietveld re®nement
yielding the crystal structure.

3.2. Testing

Following this prescription, Endeavour has been
successfully tested on a large variety of crystalline ionic
and intermetallic compounds (Table 1). The starting
con®gurations were generated by random distribution of
the atoms within the unit cell. Afterwards, simulated
annealing steps were performed until the control para-
meter K was reduced from initially 100.0 to 10ÿ5. The so-
called `temperature program' recalculated the control
parameter after m steps:

Ki�1 � 0:9 Ki: �11�
The number of steps m for each control parameter value
depended on the acceptance rate of the preceding steps:
if the acceptance rate was above the optimum value
(�40%), 3n steps were performed; if the rate was lower
than the optimum value, the interval between two
modi®cations of the control parameter was 9n steps; if
the acceptance rate was near the optimum, 300n steps
were performed for each control parameter value. In all
cases, n denotes to the number of atoms in the unit cell.

Each step was chosen at random, according to the
following move class: (i) displacement of a randomly
chosen atom in a randomly chosen direction (maximum
width 0.25 AÊ ) (95%); (ii) exchange of two randomly
chosen atoms, followed by a local optimization for 10n
steps (n = number of atoms in the unit cell) (5%).

Calculations have in most cases been performed on
experimental diffraction data provided as peak lists in
the Powder Diffraction File (PDF2) database from the
International Centre for Diffraction Data (ICDD). In
those cases where no experimental diffraction data were
available, diffraction patterns have been calculated from
crystallographic data obtained from the ICSD
(Bergerhoff et al., 1983) using LazyPulverix (Yvon et al.,
1977). The ®nal Rietveld step mentioned above has been
omitted from our test scheme since no raw diffraction
data suitable for Rietveld re®nement were available for
most of the compounds under investigation.

Concerning the potential function, the simple poten-
tial given in equation (2) was employed for all ionic test



868 AB INITIO STRUCTURE SOLUTION

structures, and the repulsion function [equation (3)] for
all intermetallic compounds (Table 1). They were para-
metrized by minimum distances between each pair of
atom types deduced from the ICSD (Bergerhoff et al.,
1983; Brandenburg, 1989).

For our test structures, a correct solution was assumed
if (a) a suf®ciently low RB value was achieved [� 10%; in
a few cases (low-quality diffraction data) up to 26%], (b)
the ®nal con®guration also corresponded to a minimum
of the potential energy, (c) the space group of the ®nal
con®guration determined by RGS was identical to that
of the correct crystal structure, and (d) the atomic
arrangement of the ®nal con®guration could not be
distinguished visually from the correct structure using
the visualization program Diamond (Bergerhoff et al.,
1996). All calculations were performed on a Intel-PII
CPU (400 MHz) running Linux 2.0.29. While generally a
more or less large number of runs using different
random number sequences has to be performed when
dealing with simulated annealing because of the limited
calculation time (SchoÈ n & Jansen, 1995), it turned out
that this was generally not necessary in our case. For
each example in Table 1, the ®rst run yielded the correct
crystal structure. A more detailed investigation using
randomly selected test cases showed that in most cases
10/10 runs yielded the correct structure. Only when
diffraction data of low quality had to be employed (e.g.
Na3PS4), was the success rate reduced.

Recently, the program has been applied to the
compound Na3PO3S, the structure of which is not
known. So far, no single crystals have been obtained,
and the structure could not be solved from X-ray
powder diffraction data by conventional techniques.

However, Endeavour calculated a very good structure
candidate from the powder data, which is in good
agreement with neutron diffraction data (Pompetzki &
Jansen, 1999). Further investigations are currently in
progress.

4. Discussion

Up to now, in the literature there have been few reports
containing a similar prescription (Deem & Newsam,
1992; Falcioni & Deem, 1999), all of them being dedi-
cated to a single chemical system (zeolites). Our concept
of a Pareto optimization of diffraction data and poten-
tial energy goes beyond this earlier work, aiming for a
merging of the methods used in structure prediction and
structure solution. In fact, the combination of structure
prediction and powder diffraction analysis has both
synergetic and complementary aspects, depending on
the particular problem. If both an accurate potential
function and a high-quality powder diffraction pattern
are available, the optimization is very fast and yields the
correct crystal structure with high probability. However,
if only a very approximate potential is available, this can
be compensated for to a large degree by a high precision
powder diffraction diagram. One might then use the
potential only for ensuring reasonable distances
between the various atom types, thus enforcing the
optimization according to the difference in powder
diffraction patterns. If, on the other hand, only few and
not very reliable diffraction data are available for the
compound under investigation, a high-quality potential
can nevertheless lead to reasonable structures. Here, the
effect of the RB term lies in the enhancement of one of

Table 1. Test compounds whose crystal structures have been successfully `determined' from powder data

The powder-data source is either given as the PDF index number (International Centre for Diffraction Data) or as a reference; entries marked
Lazy have been calculated using LazyPulverix (Yvon et al., 1977).

Compound `Chemistry' Atoms/cell Powder data Source

Na3PS4 Ionic 16 Experimental Henseler (1991)
CaCO3 (calcite) Ionic 30 Experimental 47±1743
CaCO3 (aragonite) Ionic 20 Calculated Lazy
MgSiO3 (enstatite) Ionic 80 Calculated Lazy
Mg2SiO4 (forsterite) Ionic 28 Experimental 34±0189
Na3OCl Ionic 5 Calculated Lazy
Na3OBr Ionic 5 Calculated Haas (1998)
Al2O3 (corundum) Ionic 30 Experimental 46±1212
SiO2 (quartz) Ionic 9 Experimental 46±1045
SiO2 (cristobalite) Ionic 12 Experimental 39±1425
SiO2 (stishovite) Ionic 6 Experimental 45±1374
TiO2 (rutile) Ionic 6 Experimental 21±1276
TiO2 (anatase) Ionic 12 Experimental 21±1272
TiO2 (brookite) Ionic 24 Experimental 29±1360
MgO Ionic 8 Experimental 45±0946
MgF2 Ionic 6 Experimental 41±1443
CaF2 Ionic 12 Experimental 35±0816
In2Ni21B6 Metallic 116 Experimental Adelsberger (1998)
In2Ni6B Metallic 36 Experimental Adelsberger (1998)
MgCu2 Metallic 24 Calculated Lazy
MgZn2 Metallic 12 Experimental 34±0457
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the many structures that constitute local minima of the
potential energy.

One should note that our method can also be of use in
cases where a high crystal symmetry leads to very few
diffraction peaks and thus to few parameters, limiting
the complexity of the atomic arrangement that can be
solved by conventional methods. The additional infor-
mation contained in the potential can help to solve even
complex highly symmetric crystal structures from their
powder diffraction patterns.

Although the determination of the space group from
the systematic absences of certain re¯ections in the
indexed powder diffraction pattern is often not overly
dif®cult when dealing with crystals of organic molecules,
this is frequently not the case when the structures of
complex inorganic compounds have to be solved. Since
our concept is based on triclinic crystal symmetry (space
group P1), there is no need to provide any space-group
information in the input of the calculation.²

Our experience has shown, however, that certain
basic requirements have to be ful®lled for a successful
application of our method. Firstly, the quality of the
powder pattern has to be high enough so that enough
accurate peak positions are available to allow a reliable
indexation resulting in the correct unit cell. Secondly,
the peaks should not be too broad, in order to allow the
extraction of fairly accurate intensities at the peak
positions. Additionally, the content of the unit cell
should be known accurately; otherwise the global opti-
mization will take several orders of magnitude longer,
since we would have to vary the number of atoms in the
unit cell in addition. This touches on the problem of
partial occupation of sites, which is currently being
investigated. Finally, the approximate description of the
structure of the compound under investigation must be
possible using a simple empirically parametrized
potential, i.e. the desired structure should exhibit a low
potential energy, preferably constituting a deep
minimum of the energy landscape.

If these conditions are not ful®lled, we have found
that in some cases a diffraction pattern or potential of
very poor quality can block the optimization process.
However, we expect that improvements in both the
quality of powder diffraction data and the accuracy of
the energy functions available for global optimization
will make more problems amenable to solution.

One argument frequently raised in the context of
direct-space methods is their need for a large amount of
computing time, which increases rapidly with the
complexity of the crystal structure under investigation.
For example, the solution of a crystal structure
containing some hundred degrees of freedom (e.g.
In2Ni21B6, cf. Table 1) may even take a few weeks on a

Pentium2 II processor with a clock speed of 400 MHz.
However, we believe that this issue is becoming less
relevant by the increasing availability of very cheap and
fast personal computers.

Though a variety of more sophisticated Monte Carlo
optimization techniques has been developed (Falcioni &
Deem, 1999), our results show that even the standard
simulated annealing algorithm is capable of solving
crystal structures from powder diffraction data with a
very high degree of probability, provided that a properly
chosen move class and `temperature program' are
employed.

Despite the limitations mentioned above, we believe
that the approach presented in this paper will allow the
solution of many crystal structures not possible with the
methods available up to now.³

A variety of features not mentioned in this paper are
currently being investigated, including the ability to
solve crystal structures for molecular compounds
through the implementation of a valence force ®eld, and
the possibility to preset a minimum of required
symmetry elements, thus narrowing the available
con®guration space, leading to an increase in calculation
speed.
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