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Abstract

The dichotomy method for indexing powder diffrac-
tion patterns for low-symmetry lattices is studied in
terms of an optimization of bound relations used in
the comparison of observed data with the calculated
patterns generated at each level of the analysis. A
rigorous mathematical treatment is presented for
monoclinic and triclinic cases. A new program,
DICVOL91, has been written, working from the
cubic end of the symmetry sequence to triclinic
lattices. The search of unit cells is exhaustive within
input parameter limits, although a few restrictions
for the Akl indices of the first two diffraction lines
have been introduced in the study of triclinic
symmetry. The efficiency of the method has been
checked by means of a large number of accurate
powder data, with a very high success rate. Calcula-
tion times appeared to be quite reasonable for the
majority of examples, down to monoclinic symmetry,
but were less predictable for triclinic cases. Applica-
tions to all symmetries, including cases with a domi-
nant zone, are discussed.

Introduction

The dichotomy method for the automatic indexing of
powder diffraction patterns was introduced in 1972
(Louér & Louér). It is based on the variation, in
direct space, of the lengths of cell edges and inter-
axial angles by finite ranges, which are progressively
reduced by means of a dichotomy procedure if they
contain a possible solution. With this strategy,
solutions are searched exhaustively in an n-dimen-
sional space, n being the number of unknown unit-
cell parameters. The method was first applied to
orthorhombic (n = 3) and higher symmetries (n =1
and 2) with a high success rate. It was described by
Shirley (1980) as ‘probably the optimal exhaustive
strategy in parameter-space’. Later, an optimization
of the program (DICVOL) and an extension to
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monoclinic systems (n =4) were reported (Louér &
Vargas, 1982). In particular, a partition of volume
space for finding the smallest and most probable
solutions was first used, with a subsequent reduction
of calculation times. The computing times were short
for high symmetries, but could be long (from a few
minutes to several hours) for monoclinic cases, The
reasons were not totally understood at the time, but
were attributed to overestimated intervals generated
by the calculated bounds [Q_, Q] for diffraction
lines having a product A/ < 0. This problem needed
to be investigated, together with an extension of the
method to triclinic symmetry. The present paper
deals with new developments concerning the search
for monoclinic solutions and the application of the
successive dichotomy method to triclinic symmetry;
more efficient algorithms introduced in the
associated program, without loss of exhaustivity, are
also described.

The monoclinic case (n = 4)

The problem of finding the direct parameters (a, b, c,
B) of the monoclinic unit cell from powder diffrac-
tion data can be formulated by means of

Q(hkl)=f(4, C, B} + g (B) (1

with
f(A, C, B)=h/A*+ I*/C* — 2hi cos B/AC
and
g(B) = k*/ B,
where
A=asin B, B=b and C=c sin B.

This relation appears to be more convenient in the
application of the dichotomy procedure than the
usual form, as used in previous versions of the
computer program. The four-dimensional domain is
defined by the intervals [4_, A4.], [B-, B.], [C_,

C.] and [B_, B.] The complete space is then
covered by incrementing the integers », m, t and v in

© 1991 International Union of Crystallography



988

the intervals
[A-=Ao+np, A, =A_+p),
{B-=By+mp, B, =B_+p],
[Co=Co+1tp, Cr =C_ +p),
[B-=90+v6,B.=B_+86]

where the scanning steps p and 6 have been chosen
as 0-40 A and 5° respectively and 4,, B, and C, are
the lowest values for the A, B and C parameters.
Some constraints can be used to avoid redundant
calculations; if it is assumed that A = C, minimum
limits are 4y, =d, — 4d, in the case of 4 > B and B,
=d, — Ad, if A< B, d, being the largest d spacing
observed. From the intervals of the 4, B, C and B
parameters defining one domain, a calculated
powder pattern is generated, each line being rep-
resented in @ space by an interval [Q_(hkl),
Q.(hkl)). The domain is then retained if the
observed lines @, lie within [Q _(hkl) — 4Q,, O . (hkl)
+ AQ], AQ,; being the absolute error of observed
lines, otherwise it is discarded. At this stage the true
solution can be included in the domain, which will
subsequently be analysed in detail. Consequently, the
hkl indices of the exact solution for each observed
line constitute a subset of the set of hk/ values which
have been found possible for this line. This is an
important point, since the introduction of a strategy
using a simulated recursive procedure for the storage
of hkl constitutes a significant reduction in calcula-
tion time. If all observed lines are located within the
first calculated limits, each domain is divided into
2% subdomains by halving the intervals [4_, 4.],
[B_, B.], [C-, C,] and {B_, B.]. Again, calcu-
lated lines [Q_(hkl), Q.(hkl)] are generated and
compared with the observed data, within the limits
of experimental error. If a solution exists, the
dichotomy approach is applied successively, up to a
maximum of seven times. At the last step, the unit-
cell parameters are refined by a least-squares treat-
ment and figures of merit M, (de Wolff, 1968) and
Fy (Smith & Snyder, 1979) are displayed for the N
lines used in the calculation. Optimization of this
arborescent type of analysis requires an exact calcu-
lation of the limits [Q _(hkl), Q. (hkl)]. As indicated
above, overestimated bounds were previously used
for lines with A4/ < 0 and these were responsible for
some of the excessive computation times. A
mathematical analysis of the bounds for this case is
as follows, There is no change for the case 4/ = 0, for
which the bounds are written as

Q-(hkl)=f(A4.,C,, B_)+g(B,)
and

Q. (hkly=f(4-,C_,B.)+g(B-).

INDEXING OF POWDER DIFFRACTION PATTERNS

In the calculated limits Q_, Q. given previously for
lines with Al<0 (Louér & Vargas, 1982), the
relations that exist between the parameters A, &, /,
A_, A, ..., B; were not taken into account. In fact,
a detailed analysis shows that the limits Q_, Q.
depend on relations between these different
parameters. The calculation is complicated and
somewhat tedious. The calculation of Q_ and Q.
relations is based on the search for the smallest and
greatest Q values in the four-dimensional space

E=[4-, A.]%[B-, B.]x[C_, C.]x[B-, B.].

By equating partial derivatives of the function Q to
zero, for an hkl set, it can be shown that there are
two sets of minima:

Omim={(%sin’B,.)/C% +g(B.),
(IPsin®B.,)/C% +g(B.)),
Orminz={(h’sin’B. )/ 4% +g(B.),
(h%sin’B, )/ A% +g(B,)].
Each set consists of two minima, depending on the

combination of the sign of C and A, respectively.
The smaller Q value (Q_) is selected from three sets,

Omints @min2 and Qrins given by
Omins={f(4+, C, B+)+g(B.), f(4-, C, B.)
+g(B+), f(A+, C-, B+) +g(B.),
fA-, C_, B.)+g(B.)},

which corresponds to the limits of space E.

The derivation of the relations Q , shows that they
are necessarily values of the Q function in the limits
of space E:

Q+e{f(A+7 C+7 B—)+g(B"—)’f(A—’C+’ﬂ—)
+g(B-)f(4.,C_, B-)+g(B-),
fA-, C_, B-)+gB-)}

An Appendix containing the mathematical details
has been deposited.* Table 1 displays the values of
bounds Q_, Q. for all possible cases. These rela-
tionships have been used in the program discussed
below.

The triclinic case (n = 6)

The general relation giving Q(hk/) as a function of
direct parameters is too complicated to be used in
the dichotomy method. It is more convenient to
apply the successive dichotomy procedure in Q

* A mathematical Appendix has been deposited with the British
Library Document Supply Centre as Supplementary Publication
No. SUP 54279 (13 pp.). Copies may be obtained through The
Technical Editor, International Union of Crystallography, 5
Abbey Square, Chester CH1 2HU, England.
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Table 1. Expressions of limits Q _ and Q , for hl <0 in monoclinic symmetry
he. KC,
Toosp, < 444 T g, & 444
KC. KC.
T € U4 Te g & 4 4d
1A, 1A,
reoeg, € (€€ oo, € (€A
o 1A, 1A,
e e € €€ oo € 6 €3
cosﬂ,<%%- cosﬂ,z%
1A,
cos B ST cosﬁ.>;l-c—'
cosﬁ‘<% cosﬁ‘ah—cf
cosfB < — cos_ﬂ.z%AC—~
o B2 o o
=L si = i y 3 1
e= byl g 2y, g.= G fers®l| g g 0. =0 0.-0, 0. =0 0. -0, 0. -0
a a
Q, 1 e (*®) Q. @ see (***) =Q4 Qs =04 Q. see(*)
(**) (***)
M) Q) =fA,,C..B)+8B.) ; Qr=flA,,C..A.)+eB.):
1 1 2l cos 3. 1 1 2l cos 8. 1 1 2h cos 8 1 1 2hcos . B .
ataEThc atx S The e % Tia c el TTA 03 = fA Coofo)+8B.) i Qu=fih . Coof)+ 8B
with fleya) =B o+ L L 2Hcosz "lx“’“ wd g0 =
Q. =fA.,C..8.)+gB) | Q.=flA,.C.,B.) +8B) Q.=flA.,C..B) +8B.) | Q. =flA.,C,.B) +3B.) * *
space, i.e. to the parameters Q 4, Qp, Oc, Op, Qr, O Wwith

of the linear form
Ohkl)=hQ 4+ K*Qg+ Q-+ hkQp+ kIQ g+ IhQ,
where
0, =a*.a* QOp=Db*b* Q,=c*.c* Qp=2a*b*
Qr = 2b*.c*, Q= 2c*.a*

and a*, b*, c¢* are the basis vectors of the reciprocal
lattice.

The calculated limits values [Q_, Q.] for an Akl
set are then given as a function of the limits of

Q4o QF:
Q_=hQ, +k*Qp_+1*Qc-+Au0p-
+(hk = A,)0p+ + A Qp— +(kl— A)Qr+
T AuQr- +(lh—Ap)Qr+
Q. =hQ4: +KQpi +1*Qcs + 2,400+
+(hk = Aw)Qp— + AQp+ + (k= Ay)Qp -
T AnQr+ +(h—Ay)QF-

/\hkzhk lfthOand /‘.hk:Oifhk<0,
Ay=klif kl=z0 and A,;=0if kI <O,
/‘./h:lh lfthOand /\”,:Olflh<0

In order to reduce calculation times, two main
restrictions on Ak/ indices have been imposed:

(a) maximum values 4, k and [ are limited to 2 for
the first five lines.

(b) h + k + [ < 3 for the first two lines.
Condition (a), coupled with the calculation strategy
used in the program, generates 14 possible independ-
ent hkl combinations for the first two lines. They
are (100,010),* (100,110), (100,011), (100,020),*
(110,010), (200,010),* (110,001), (200,110), (110,002),
(200,011), (110,020), (110,017), (170,110), (200,020).*
These cases are quite representative of the majority
of experimental patterns with triclinic symmetry.
From an examination of the 29 triclinic cases
appearing in the National Bureau of Standards (US)
Monograph No. 25, 16 belong to the (100,010) case, 7
to (100,110), 1 to (100,011T), 1 to (200,010), 1 to



950

(200,011), 1 to (110,020) and 1 to (110,011). Only
one example does not belong to these 14 cases [Narl
Bur. Stand. (US), 1979b]. This has a large unit-cell
volume (1747 A%, with one long dimension
(21:29 A); this is the (010,120) case. In the algorithm
for triclinic symmetry, the 14 cases are analysed
successively until a solution has been found. More-
over, a significant decrease of computational times
has been obtained by taking into account specific
relations in reciprocal space (Runge, 1917; Ito, 1949),
which can be applied to the cases marked above with
an asterisk. Indeed, for these cases, if pairs of lines
hk0 and hkO can be located, a third ‘powder con-
stant’ is automatically obtained, giving a problem
with only three unknown parameters, which are
searched by the successive dichotomy technique.

As reported previously, there is great benefit in
using a partition of volume space in the strategy of
searching for the solution. In the triclinic case, Smith
(1977) has shown from the examination of 1/N vs d*
plots for accurate triclinic patterns that a simple
approximate relation can be derived for the unit-cell
volume as a function of the number of lines N:

Vesw = 0:60 d*/(1/N — 0-0052).

In the new version of the program solutions are first
sought within a range *30% of V. If no solution is
found, the search is continued on each side of this
range. Moreover, the strategy also benefits from a
recursive procedure for the storage of Akl indices at
each dichotomy level. The combined effect of the
high density of diffraction lines, in the triclinic case,
and the progressive reduction of the intervals
[Q_(hkl), Q. (hkl)] can be used for rejecting a solu-
tion for which two successive lines would be indexed
by an identical hk/ set; then the dichotomy route
being investigated in the arborescent strategy is
immediately stopped.

The indexing program

The new features reported above have been incor-
porated in the program DICVOL91, which is the
successor of DICVOL. These improvements have
resulted in a significant increase in the efficiency of
the method for symmetries down to monoclinic and
in the introduction of a routine for the indexing of
powder patterns for triclinic compounds. In addition
to the exhaustive nature of the strategy, the opti-
mization of error limits has led to a considerable
decrease in calculation times for monoclinic solu-
tions. The algorithm used for triclinic solutions is
based on hkl restrictions for the two first lines, but
very few cases, i.e. only those for which the hk/
indices of the two first lines are excluded from these
conditions, cannot be indexed by the new program.
This constraint constitutes a deviation from the
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exhaustive feature of the dichotomy procedure. The
general principles employed in the previous version
of the program are still used: a search strategy of
solutions from high to low symmetries and the use of
a partition of volume space (scanning of successive
400 A® shells of volumes, except for triclinic sym-
metry where the shells are based on V) in order to
find first the smallest and more probable solutions.
Indeed, for a given average discrepancy between Q.
and Q.. for the first N lines, it is known that the
volume is inversely proportional to the figure of
merit My; consequently, the smaller the volume, the
greater is the figure of merit. The normal constraints
on parameters resulting from the symmetry (Louér &
Louér, 1972; Louér & Vargas, 1982) are used to
avoid redundant calculations. Being exhaustive, the
program can give ‘negative (no solution found) as
well as positive (solution found) information, within
the stated volume and error limits’ (Shirley, 1978).
With precise data, the number of proposed solutions
is generally very small and frequently only one solu-
tion is found. The parameters are refined by a least-
squares method and figures of merit (M, and F,) are
displayed. Moreover, in order to help the user, the
number of solutions retained at each level of the
dichotomy procedure is printed to follow their pro-
gress in the arborescent strategy. An examination of
these numbers can be useful if too strict an absolute
error is applied to the input data relative to the
inaccuracy of the data. Clearly, a small increase in
the allowed error can facilitate obtaining a solution,
but it increases the risk of finding false solutions and
of losing the correct one. The possibility of increas-
ing the error window must therefore be used with
caution.

The program DICVOL9]1 is written in Fortran77
and can be easily adapted to any main-frame com-
puter. The strategy used for indexing begins from the
cubic end of the symmetry sequence. The capacity of
the program is 270 kbytes. Tests have been carried
out on a Control Data Cyber 180/860, a MicroVAX
3100 and a PC AT386 computers. The CPU times
given in the following comments have been obtained
on the CDC computer. Calculation times on the
MicroVAX and PC computers were, on average, 2-4
times and 1012 times greater, respectively.

Applications

Indexing of a large number of accurate powder
diffraction patterns has been carried out by means of
DICVOL91 with a very high success rate. However,
for an unbiased test of efficiency of the program,
observed data known for their quality, such as those
reported in the National Bureau of Standards (US)
Monograph 25, have been used. Two kinds of tests
have been considered; one is based on all powder
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diffraction data sets found in §17 of Monograph 25
[Natl Bur. Stand. (US), 1980] and the other is based
on all triclinic data sets reported in the complete
monograph. In addition, powder data collected from
a modern powder diffractometer and indexed by
DICVOLS]1 are also discussed in terms of accuracy,
indexing efficiency and specific examples charac-
terized by a zone dominance.

(i) §17 [Natl Bur. Stand. (US), 1980)] reports
powder data with all symmetries: cubic (2),
tetragonal (5), hexagonal (4), orthorhombic (19),
monoclinic (18) and triclinic (6). The standard input
data were: the first 20 lines of the pattern, a standard
absolute error of 0-03° (268) on each diffraction line,
a maximum cell edge of 25 A, a maximum value of
125° for B in monoclinic symmetry, a maximum
unit-cell volume of 1500 A® and the required My
figure of merit for printing a solution was set to 3.
The results, with ranges of CPU times on the CDC
computer, can be summarized as follows. (Unless
stated otherwise, the same conditions were applied to
all data sets.)

(a) For solutions with orthorhombic or higher
symmetry, all patterns were correctly indexed. If the
time of 41s required for indexing the data for
hexagonal chromium iron oxide is omitted, the
average time for indexing the other 29 patterns is less
than 3 s.

(b) For solutions with monoclinic symmetry, all 18
patterns were indexed; for four of them, dicussed
below, the input absolute error on observed peak
positions was increased slightly for a few lines owing
to the inaccuracy of published data. Eight of the
patterns were indexed with a CPU time lower than
141 s, seven within 141-298 s and three required a
greater time (gypsum: 36 min; potassium hydrogen
iodate: 14 min; sodium chlorate hydrate: 280 min). A
few comments can be made concerning four patterns.
For the data from gypsum, chromium chloride and
sodium chlorate hydrate, the standard error on
observed Bragg angles was selected to be 0-04° (26)
owing to the lower quality of data, as shown by the
values of the figures of merit [Myy=24; Fyy=
30(0-010,67)], [M,s=16; Fo=12(0-018,89)] and
[My = 13; F,,=17(0-010,118)]. Another feature of
these figures of merit is the rather high value of N_,.,
which indicates that a large number of lines are
missing from the pattern. For chromium chloride the
volume of the unit cell was halved, which is probably
a consequence of the low quality of data (only 19
lines available). Also, it can be noted that the pattern
of the y phase of potassium hydrogen iodate was
indexed after using an absolute error on the 111 line
of 0-06° (260), according to the reported error; this
example took 11 min and the solution is charac-
terized by low figures of merit [My,=14; Fyy=
25(0-012,67)}.

991

(c) For solutions with triclinic symmetry, the six
powder patterns were indexed and the CPU times are
discussed in (ii).

(ii)) The data for all triclinic diffraction patterns
reported in the National Bureau of Standards (US)
Monograph No. 25, except data for C,yHiy (V=
1747 A3) [Natl Bur. Stand. (US), 1979b], which is a
case (010,120) not implemented in the program, were
input to DICVOL91. Among the 16 examples
belonging to case (100,010), ten were indexed in less
than 50 s, four required a CPU time between 95 and
255 s and the last two solutions were found in 11 min
[Nat! Bur. Stand. (US), 1979a) and 10 min [Nat/ Bur.
Stand. (US), 1981]. Calculation times for the seven
examples belonging to the case (100,110) were, on
average, significantly greater, from 10 to 121 min.
For the single case (200,010) the CPU time was
11 min. Among the two cases (110,020) one was
indexed in 5 min, while the second one [Nat! Bur.
Stand. (US), 1978a), as well as the single case
(110,011) [Natl Bur. Stand. (US), 1978b}, failed.
Explanation for the failure was found in the low
precision of the reported data, coupled with a large
number of missing lines, as revealed by the calcu-
lated figures of merit F;, 30(0-014,69) and
12(0-013,183) respectively. From this analysis, it can
be concluded that the majority of the triclinic
examples has been indexed, excepted for a few cases
with low accuracy. It is difficult to make predictions
about CPU times; they can be short (few seconds),
but some examples were more time consuming
(about 2 h maximum). It should be noted that the
number of triclinic cases is rather low when
compared with the number of materials with other
symmetries. Moreover, if the solution is found for
these time-consuming examples, time is probably
unimportant, particularly if an ab initio structure
determination follows this geometrical recon-
struction of the reciprocal lattice (Bénard, Louér &
Louér, 1991). In general, it can be useful, and some-
times necessary, to transform the solution found into
the conventional unit cell. The program CDF-SRCH
(JCPDS) was used to find the normalized unit-cell
parameters, with the further benefit of being able to
interrogate the NIST Crystal Data File (1988)
database in order to search for an apparently
isostructural material.

(iii) It is of interest to comment on specific
examples in which one cell dimension is significantly
longer or shorter than the others. In the examples
described above in (i) and (ii) some powder data
correspond to a longer parameter. These examples
were indexed by DICVOL91; however, the observed
trend in the indexing procedure was an increase in
the CPU times. Among the powder data having this
feature are those for monoclinic phenylhydrazine
hydrochloride with b= 30-641 A [Natl Bur. Stand.
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(US), 1980], monoclinic potassium hydrogen iodate
with a=21-853 A [Natl Bur. Stand. (US), 1980],
triclinic clopenthixol hydrate with 5 =21-939
[Natl. Bur. Stand. (US), 1980] and triclinic calcium
hydrogen hydrate with b=18-994 A [Natl Bur.
Stand. (US), 1976].

Examples with a short axis are probably worth
discussing since they are characterized by the
presence of one common zero index for all the first
lines of the pattern. This situation frequently occurs
in materials having a layer-type structure. As
examples, powder data of some metal hydroxide
nitrates collected by means of a powder diffractom-
eter with strict monochromatic radiation can briefly
be commented on. In the powder pattern of
lanthanum hydroxide nitrate (Louér, Louér, Lopez
Delgado & Garcia Martinez, 1989), the first six lines
have a zero k index; in the powder pattern of neody-
mium hydroxide nitrate (Louér, Deneuve, Herviou &
Gourlaouen, 1986) the first seven lines have a zero k
index; in the powder pattern of cadmium hydroxide
nitrate (Auffrédic, Plévert & Louér, 1990), the first
eight consecutive lines are 0kl. Because in the succes-
sive dichotomy method the possible mathematical
solutions are not deduced from a limited number of
base lines, the presence of a common zero index for
the first lines of the pattern does not impede finding
the correct solution; consequently, all these examples
were indexed by DICVOL9]1. Evidently, an
exceptionally short axis with a large number of initial
diffraction lines with a common zero index with
respect to the number of input data will introduce
difficulties in the search of the solution, with the risk
of obtaining pseudo solutions. This can be illustrated
by the indexing of the powder diffraction pattern of
a zinc hydroxide nitrate, since 14 of the initial lines
have a zero k index (Eriksson, Louér & Werner,
1989). From the first 20 lines, DICVOL91 proposed
four solutions, with the following unit-cell volumes
and M, values: 679 A3, 18; 748 A3, 14; 797 A3, 15
and 757 A3, 19. From these solutions, the 50 lines of
the complete pattern were reviewed by means of the
program of data evaluation NBS*4IDS83 (Mighell,
Hubbard & Stalik, 1981). The three pseudo solutions
did not resist the analysis. Finally, only the correct
solution [a=17-951 (7), b =3-258 (2), c=
14275 3) A, B =114-95(2)°, V'="757-08 A3, Mo, =
19, Fyy = 37(0-0095,57)] explains the complete data
set.

It is of interest to mention here the indexing of the
powder pattern for barium titanyl oxalate, a material
used for the synthesis of high-purity barium titanate;
although this precursor was described a long time
ago, its powder diffraction pattern was described as
complicated. Accurate data were collected, by means
of a powder diffractometer equipped with an
incident-beam monochromator, and were indexed by
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means of DICV0OI91 in 291 s (Louér, Boultif, Gotor
& Criado, 1990). The large volume of the unit cell,
2595 A3, explained the density of observed lines and
furthermore demonstrated that this important pre-
cursor of pure stoichiometric barium titanate was a
single phase.

To conclude, the mathematical analysis of the
dichotomy procedure for indexing monoclinic and
triclinic powder diffraction patterns has resulted in a
significant improvement of the computer program,
DICVOI91; its efficiency in indexing accurate
powder diffraction data has been demonstrated by a
very high success rate.

The authors acknowledge Dr L. Gatineau, of the
CRSOCI at Orléans, for helpful discussions concern-
ing the calculated Q ranges for monoclinic symmetry
in the previous version of the program.
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