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A Fully Automatic Program for Finding the Unit Cell from Powder Data

By J. W. VISSER
Technisch Physische Dienst TNO-TH, P.0.Box 155, Delft, The Netherlands

(Received 21 October and in revised form 20 January 1969)

A description is given of a fully automatic program, written in ALGOL 60, that finds the constants of
the reciprocal lattice from powder data. The progress of the program is illustrated with the (nearly)
complete computer output for one selected case. Planes through the origin of the reciprocal lattice
(zones) are found first. After evaluating these, the program selects pairs of zones with a common row
in order to find reciprocal lattices, which are then reduced in a simple way. Each solution is compared
with the experimental data and a figure of merit is calculated. The program is most suited for compounds

of orthorhombic or lower symmetry.

Introduction

The problem of finding the unit cell from powder dif-
fraction data can be formulated with the help of the
reciprocal lattice:

(2 sin 8/2)2=1/d2?=h%a*2+ k2b*2 4 [2c*2
+kl.2b*c* cos a*+hl. 2a*c* cos B
+hk . 2a*b* cos y* . (1)

We define Q =104/d? and write
Q(hkl)=h2A+k?B+12C+kID+hlIE+hkF. (2)

The task of finding, in the general case, the six con-
stants 4...F all at the same time is, at present, too
big a problem; for lattices in which not more than two
parameters have to be determined, there exist graphical
methods (e.g. Hull-Davey charts), while for lattices
with orthogonal zones the methods of Lipson (1949)
and Hesse (1948) are suitable.

The systematic trial-and-error method of Werner
(1964) is based on the use of a computer. It is gen-
erally applicable, but the computing time (even for
present-day machines) becomes prohibitive for triclinic
lattices (Taupin, 1968).

A perfectly general approach to the problem is the
method given by Runge (1917), rediscovered by Ito
(1949, 1950) and refined by de Wolff (1957). According
to this approach we first try to find zones (net-planes
in the reciprocal lattice containing the origin); any two
true zones will have a line of intersection. If the angle
between two such zones is found, we have determined
a reciprocal lattice. Sometimes this lattice can be re-
duced, that is, described on symmetry axes in the re-
ciprocal lattice. The main difference between the meth-
od described here and the one proposed by Ito is that
Ito deliberately ignores the symmetry of the reciprocal
lattice, whereas we try to establish the reduced lattice
as soon as possible.

The reduction procedure used in this program was
kept simple and therefore it does not handle lattices
with more than twofold symmetry very well. One- and
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two-parameter problems can probably be solved more
effectively by a systematic trial-and-error method
(Werner, 1964; Jamard, Taupin & Guinier, 1966;
Taupin, 1968).

The program

The program is based mainly on suggestions given by
de Wolff (1958). It consists of the following steps:

(1) Find zones and reduce these.

(2) Test whether any or both of the base vectors
should be halved. Refine the parameters with a least-
squares (LS) method. Calculate the probability that the
zone is found by pure chance (quality figure).

(3) Find pairs of zones with a common row and
determine the angle between these zones.

(4) Reduce the lattices found and transform if nec-
essary so that the lattice is described in a standard way.

(5) Try to index the first 20 lines of the pattern and
repeat this after a LS-refinement of the parameters.
Note the number of lines actually indexed and cal-
culate the figure of merit.

These steps in the program will be considered in some
detail in the following sections. They will be illustrated
with the nearly complete computer output for a well
known problem.

The example

The sin? @ values of KNO,, obtained by Hesse (1948)
with Cr Ka radiation, were used for the example. They
are reproduced in Table 1. These data were also taken
by Hesse (1948), Lipson (1949) and Ito (1950, page 205)
to illustrate their methods.

As we usually have much smaller Q values to deal
with (the first Q is often smaller than 100), the program
is not really adapted to this kind of pattern, especially
as the limit for the difference between two ‘equal’ values
is too small for this case.

Finding zones

Any two points in the reciprocal lattice, together with
the origin, define a plane in the reciprocal lattice, cor-
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responding to a crystallographic zone. Let the values
of Q (the square of the distance from the origin to the
point) be Q' and Q". We can find other points in this
zone by calculating

Om,n=m2Q" +n2Q0" +mnR , 3)

where R=2)/Q’'Q" cos ¢, ¢ being the angle between
the directions from the origin to the points whose Q
values are Q" and Q”. Reversing equation (3) we might
be able to find the value of R belonging to the Q' and
Q" of a set of Q values:

R=(Qm,n—m?Q'—n2Q"")/mn . @

For Q' and Q'' we try combinations of the first three
with the first six lines of the Q list (Table 2), unless
specific combinations are given in the input.

By inserting for Qm, s all observed Q values up to
a reasonable limit and for m and » a few positive inte-
ger values, and by storing the absolute value of R,
we get a great number of |R| values, some of which
are equal within the limits of error. We found empir-
ically that there is not much to be gained by extending
the index field beyond n,m=2.* In this case we can
expect at most 8 equal values of R when R#0 and 4
equal values when R=0.

In the program we multiply R by a constant factor,
round off to the nearest integer value and add one to the
memory space corresponding to that number. When
finished, we go through the memory in small over-
lapping steps, summing the contents of 6 successive

* This was suspected and subsequently proved empirically
by ir. F. Kuypers of our laboratory (internal report).

memory spaces. If the sum exceeds a preset number
(e.g. 4if Q'#Q") then a weighted mean is calculated
and stored. The tolerance in R has thus a fixed absolute
value, determined by the constant by which R was
multiplied. This is the first tolerance given in Table 1.

The first five columns of Table 2 give the output of
the zone-finding procedure. NR means only a serial
number; NUMBER (4th column) is the number of
times that the value of R was found.

When the multiplicity-factor of a powder diffraction
line is greater than two, its Q value represents more
than one (significant) point in the reciprocal lattice.
Therefore it is useful to try combinations of Q values
of the type Q'=Q" (Table 2). In an orthorhombic
lattice, for example, each Q(h,k,/) with h,k,I#0 re-
presents 8 points in the reciprocal lattice. These points
define three different zones. In the program, we accept
for the same pair, Q', 0", up to four significant values
of R (which is the maximum one can expect from the
combination of two general orthorhombic reflexions).

A transformation of the zone axes is carried out if
R> Q' and if there are equalities between Q’, Q" and
R. The new values of Q’, Q" and R are in the last
three columns of Table 2.

In the first case (R> Q") there is at least one recipro-
cal lattice point, i.e. (1,1), whose Q value (Q'+ Q" — R)
is less than that of one or both of the axes on which
the lattice was described. In this case a transformation
is carried out to describe the zone on shorter axes
(zones 8 and 9, Table 2). This process is repeated if
necessary.

In the second case (equalities between Q’, Q" and R)
there are pairs of Q's which are systematically equal.

Table 1. sin? 6 values of KNOj
The first part of the output reproduces the tolerances and the Q values of the input.

H11834D/41~3-68/VISSER/AUTONATIC INDEXING

PERHITTID RANGE IN R (MAAS) IS+,5000000000004+ 1

RERMITTIOD RANGE IN D !1S+,500000000000n+ 1

023,9 942,08 1271.0 1392.8 1427,0
2284,9 2335,0 2411,0 2496,8 2678,0
3462,3 3481,0 35130 2689,8 3766,0
4663,9 4962,6 3239.0 5427,0 5551,0

1720,0  4789.0  18B3,0 1877.4 1898,0
2734,0 28i6,8 3060,68 3i22,8 3263,0
4177,8  4223.0  4287,8 4500.8  4600,0
£624,0 5653.,8 574B,6 6151,8 6699,0

* Hesse, 1948.

Table 2. Results of the zone-finding procedure

NR is a serial number, MAAS stands for R, NUMBER is the number of times a value of R(MAAS) was found. The next three
columns contain the reduced values of Q’, 0’ and R respectively.

MR Q1 az MAAS NUMBER REDUCED
1,68 923, 9823.8 566,5 5,0 319,9 603,41 0,0
2,0 923,¢ 923.0 1414.8 4,0 107,8 815,2 0,0
3.0 923.e 943.9 15,2 4,0 923,06 943,0 15,2
4,0 923,86 12%1,.0 1°70.4 4,0 347,8 685,3 0.0
5.0 923, 43902,8 3372.9 4,0 923,80 942,1 473,14
6,0 943,6 943.0 515,0 4,0 342,8  ¢00,3 0,0
7,0 94%,e 943,04 991.7 4,0 223,6  719,4 0,0
8,0 943,e 1271,8 1272,5 4,0 941.5 943,0 13,5
9,0 943,¢ 1392.8 1411.9 4,0 923,1 943,0 474,1
10,0 1274, 1271.0 1617.& 4,0 231.0 1040,0 0.0
1400 1274.€ 1271.0 16419,.4 3,0 280.6  990,4 0,0
12,0 1271, 1271.8 41638.4 3.0 176,08 1095,0 0.0
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This means that there is a mirror-line in the zone and
the zone is redefined on orthogonal axes. In Table 2
the zones 1 and 2 illustrate the reduction when Q'=0";
zone 4 illustrates the case for R=Q".

Improvement and evaluation of zones

The zones found are recalculated up to 0-8 X Qmax,
with Q'/4, Q"' /4 and R/4 as parameters. If, for example,
the number of observed Q values which match calcu-
lated Q values with odd 4 (and even k) is sufficient,
then we assume that Q'/4 is the correct parameter. The
same sort of test is carried out for Q" (condition:
odd k, even h) and for centring of the old zone (con-
dition: h=2n, k=2n, h+k=4n) and the new zone
(h+ k =2n). With the parameters thus obtained a round
of least-squares is carried out. At the same time the
zones can be printed (Table 3). The bottom line of this
Table contains the refined parameters and the quality
figure (next paragraph).

At the same time we calculate the probability that
this zone has been found by pure chance. Both the
parameters of the zones and the observed Q values will
contain deviations from the ideal value. When the dif-
ference between a Qcarc and a Qobs is less than 0-3%
(with a minimum of 3-0 in Q=10%/d?) we regard this
near coincidence as support for the zone. Associated
with each Qopsin thelist thereisthusa certainrange, 40,
(0-3% on both sides) of significant 0 values; any Qecale
falling within this range will be considered ‘fitting’. If
Onmax is the highest observed Q value in the zone, then
the probability, p, that an arbitrary @ value fits, is ob-
viously the sum of the ranges associated with all ob-
served Q values up to Qmax, divided by the value of
Omax: p=(Z 4Q)/Qmax. If there are N, calculated
Q values in the zone, Ny of which give a fit, then the
probability that this should occur by pure chance is

N,!

C= No!(No— No)!

- pNo(1 —p)Ne=No .

Table 3. Zones

Only the first of all the printed zones is shown. The top line
gives the original parameters, the bottom line contains the
refined parameters followed by the probability that this zone
was found by chance. The reciprocal of this figure is found under
QUALITY in Table 4 (new number 6).

In the zone the calculated Q’s that match an observed Q
are marked with an x.

39,9 683,1 6.0
5418.9
2678,9 3482,0 X 529%.4
1279.5 1882,6 X 3692,8 X
319.9 923,08 X 2732,4 X
6€3,1 2412,5 X
319.6 502,7 0.0 .A{%.- 1
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The numbers N, and N, should refer to significant
points only. :

A line, together with its higher orders is, therefore,
counted as one single observation, both for No and Ne.
Also, we deduct the number of parameters involved from
the number of significant points to obtain Np and Ne.

For technical reasons we assign the reciprocal value,
1/C, of the above probability as a quality figure, to
the zone. The zones are sorted on this quality figure
(Table 4); only the best six zones are used in the rest
of the program.

The program accepts up to four different values of
R for every Q'-Q" combination. In this way it collects
many false zones. The criterion described above has
proved to be a very powerful tool in separating the
true zones from the false ones.

Combinations of zones and determination
of the angle between them

In order to find a lattice, all possible combinations
(including the combinations of each zone with itself)
of the six best zones (cf. preceding section) are tried.
For every pair of zones we must first find the line of
intersection, whence the angle between them can be
determined.

The line of intersection of two zones is a row of
common points; the Q value of the first point of this
row must be a low Q value occuring in both zones.
In order to find this point we compute the Q values
of the four points nearest to the origin in each zone
(Q,Q0",Q0+Q"+R, Q' +Q"—R) and compare these
with the points of the other zone. If a common @ value
is found the zones are redefined (if necessary) with the
common value as one of the axes and the smallest re-
maining Q value as the other (Table 5). Provisionally
labelling the parameters of the first zone, 4, Band F
and those of the second zone 4, C and E, we can use
equation (2) to determine the remaining parameter, D:

D=(Q—h*A—k*B—12C—hlE—hkF)/(k) .
For Q we insert all observed Q values in the list, for
h,k,l we take:
—2<h<+2;k=-2,-1,1,2;1=1,2 (kI#0)).
The actual calculation is carried out in much the same
way as the selection of values of R (see the section

Finding zones). Apart from the most frequently occur-
ring value of D, three other values are retained, but

“only if they are not much less frequent than the best

values (Table 6). In the example shown, none of the
combinations yields more than two values of D. The
example also shows that it is indeed useful to combine
zones with themselves.

Reduction of lattices

Some of the sets of constants A4...F that we have
found might be different descriptions of the same lat-
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tice; other lattices could be described in a simpler way.
Therefore the lattices are reduced and brought to a
standard description.

The reduction of the lattices is carried out in two
steps. In the first step we determine the shortest non-
coplanar translations in the reciprocal lattice by cal-
culating the Q values of half the number of reciprocal
lattice points close to the origin (the inversion-equi-
valent points are left out), selecting the smallest O
values and storing their indices (hn,kn,ln, n=1,2,3).
The translations are coplanar if the determinant of the
matrix /Ay, ki, h/ha,kay blhs ks, 15/ equals zero. In this
case we try the next smallest Q value as the third trans-
lation, efc. until a non-coplanar set is found. The
second step in the reduction is a test for symmetry.

We need only test two kinds of symmetry relations:

(@) Two of the translational constants (4, B,C) are
equal while the angle between their directions differs
from 90°, e.g. A=B and F#0. In this case the reduced
constants (primed) are: A'=(4+B-F)/4; B'=
(4+B+F)/4; C'=C; D'=(D—E)[2; E'=(D+E)/2;

F'=0. This case is illustrated by lattices numbered
6-10 in Tables 6 and 7.

(b) An angle-factor is equal to one of the transla-
tional constants which defines one limit of the angle,
e.g. F=A or F=B. If F=A the reduced constants are:
A'=A/4, B=B—-A/4, C'=C, D'=D—E|2, E'=E]2,
F'=0. Lattice number 4 (Tables 6 and 7) illustrates
this case.

The third possible relation, e.g. D=E only leads to a
reduction if 4 = B, which is treated above, or if F=24
or F=2B, which is impossible when the lattice has been
defined by the shortest translations. By cyclic permu-
tation of the constants they are all made to pass the
few simple tests mentioned above. In this way all
orthorhombic, and most of the monoclinic, lattices
are recognized as such. Only one extra test is applied
in order to pick out a few special cases of monoclinic
centred lattices. Both symmetry-relations mentioned
point to a probable centring of the lattice. This cen-
tring is, however, disregarded at this point of the pro-
gram. The reduction of the lattice will establish the

Table 4. Evaluated zones

The evaluated zones are printed in descending order of the quality figure. The notation has been changed from Q’, Q”, Rto A4,
B, F respectively. The quality has been determined with the parameters before refinement [see nos. (NEW NR) 4 and 11].

EVALUATID ZONES

NEWKR A ]
1 922,4 942,0
2 317,5 674,1
3 107.8 814.7
4 922,7 944,65
5 317,8 664.8
6 319.6 602.7
7 223,2 718,5
8 281,14 986,3
9 23¢,7 1043.2
16 176,14 1094,0
( 11 922,7 941,8
12 343,4 598.2

F QUALTTY OLDNR
14,7 1448,9 3,0
0.0 1126,7 8,0
0.0 46,3 2.9
472,3 39,9 5,1
6,0 23,0 4,8
0,0 23,9 1,0
0.0 1.7 7,0
0.0 1.1 11,0
8,0 3.1 10,8
6,0 1,2 12,0
472,3 1.0 9.8
0,0 9.2 6,0

Table 5. Combined zones
The possible combinations of the six best (first) zones of Table 4 are given. The value of D is not zero but needs to be determined.

CUMEINED ZOMES

COMRINATION A B8 ¢ D 4 F NEW -MR
1 1 922,4 942,0 942,06 0,0 14,7 14,7 14
1 2 $41.8 922,4 317.5 0,0 639.0 14,7 12
1 3 922,.4 942,06  187,8 0,0 245,6 14,7 13
1 4 92,5 942,0  941,8 ¢,0 472,3 14.7 14
1 5 922,14 942,0 317,8 0,0 635,5 14,7 15
1 [ 922.4 942,06  319,6 6,0 639,2 14,7 16
2 2 317.5  624,1  624,4 0,0 6,0 6.0 2
2 4 944 ,7 347,5 922,7 6,6 472,3 635,0 24
2 5 317.6 624,1  604,0 8,6 8.0 6.6 2
3 3 107.8 814,7 814,7 6.0 8,0 6.0 II
3 4 92z.6 107,8 941,8 0,0 472,3 245.6 34
3 5 927 .1 1m7,8 317,8 0,0 635,5 215.6 3B
3 8 922,4 107,8 319,64 0,6 639,2 215.6 I
4 4 922,7 941,8  941,8 0,0 472,3 472,344
4 5 92z,2 941,8 317,8 6,06 635,5 472,3 45
4 s 922,5 941,88 319.6 0,6 £39,2 472,3 46
5 5 317.8 64,0 6C4,4 ¢,0 9,¢ 0,0 55
5 5 92,8 317.8  315,6 0,8 639,2 635,5 E6
) 5 315.6 682,7  682,7 0.6 0,0 0.0 66
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crystal system, the Bravais-type follows from the final
indexing as shown in the next section. The reduced
lattices are shown in Table 7.

Final test on the lattices found

With the lattices found the program tries to index the
first 20 lines of the diagram. At the same time a least-
squares refinement of the parameters is carried out.

93

By counting the number of reflexions that can be in-
dexed on the basis of a centred lattice (4, B, C, I or F)
the Bravais-type is established. This procedure is re-
peated once, after which the number of non-indexable
lines is noted and a figure of merit (de Wolff, 1968)
is calculated (Table 8). This figure of merit is in fact
the ratio of the expected average discrepancy between
the observed and calculated Q values for an arbitrary
reciprocal lattice of the same size and the actual aver-

Table 6. Possible lattices

The values of D have been determined. The tolerance on D (compare Table 1) was a little underestimated, whence the ‘double’
values (e.g. combinations 121 and 122). The number of times a value of D has been found is mentioned under MULT.

POSSIBL: LATTICES

SERTAL A B ¢ D [ F MULT COMBNR
1 41,8 022, 4 317,5 635.5 635,0 1447 11,0 121.0
2 941,68 922.4 317,8 637.0 635,0 14,7 11.0 122,0
3 22,1 942.0 317,8 636,4 635,5 14,7 13.0 151.,0
4 317,.6 624.4 604,08 624.2 0.0 0,0 14,0 251.9
5 31746 624,14 604,0 622.5 0,0 0,0 10,0  252.0
6 522.7 941.8 944,8 16408.8 472,3 472,43 12.0 441,08
7 317,8 604,08 604,0 582.2 0.0 0.0 13,0 551.,0
8 31746 604.0 604,10 580.:6 0.0 0,0 9.0 552,0
9 31946 602.7 602,7 581.9 0.0 0.0 11,0  661,0

10 31946 6n2.7 602,7 583,0 0,0 0.0 11.0 662.0

Table 7. The reduced lattices

All of them, except no. 6, basically represent the lattice of no. 4 (e.g. combination 122 in Tables 7, 8 and 10. A reduction of the
refined values in Table 8 yields the same lattice as combination 251).
The coincidence of lattices 7 and 8, and of 9 and 10 is recognized; only one of each pair is retained.

LATTICES REDUCED

SERTAL A 2] [+ D
1 504,3 217,8 624,3 a
2 60249 317.8 624,37 v ]
3 604,3 317.8 623,4 a
4 31746 i56.0 447,9 a
] £G4, 0 317.6 605,5% 0
6 5€141 60.7 922,7 o]
? 317,86 156.,4 447.,% 0
& 317.8 156,8 447, 4 0
] 319,6 155.9 446,8 0
10 319.6 155.6 447 .4 o]

3 F MULT  COMBNR
0 620,9 9,0 11,0 121,0
9 62z,3 240 11,0 12,0
9 621,8 0.0 1330 151‘90
0 6.0 6.0 14,0 251.8
0 585,4 6,0 10,0 2%52.0
[+] 472,3 0,0 12,0 441,0
<} 0,0 0,0 13.0 551,80
0 6,0 0,0 9,0 552,08
] 6.0 0.0 11,0 661,0
0 £,0 8,0 11,0 682.0

Table 8. Lattices after indexing and LS refinement

The column NUMBER gives the number of indexed lines among the first 20. The figure of merit is entered in the column
QUALITY. In the column CENTER, 6 stands for a primitive lattice.
The refined parameters of the first two zones are equal, the number of indexed lines and the quality, however, are based on the

parameters before refinement.
LATTICES AFTER INDEXING AND LS REFINEMENT

A B c D F
317,9 15¢€,1 4471 g.0 0,0
317,9 156,14 447,1 q,0 0,0
318, ¢ 156,14 447,31 6.0 0.0
624,1 316,00 6030 0.4 623,6
603, 318,14 663,4 0,0 581,9
603, 31€,0 624.3 0.6 623,5
663,93 318,2 624,5 0,08 624,4
£60,4 6,6 92349 0,0 472.0

ac ™

c o aca «

NUMBCR  QUALITY CENTER COMBNR BRAVAIS TYPE
0 30,0 20,2 6,0 251,86 P
N 17,0 17,7 6,0 552,06 P
0 17,0 16,1 6,0 661,06 P
] 13,0 18,7 6,0 12240 P
0 12,0 26,2 6,0 252,86 P
W0 12,0 15,2 6,0 1540 P
o0 11,0 22;3 6,0 124,0 P
0 10,0 24,8 6.0 441 ,8 P
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age discrepancy. The four best lattices are printed layer
by layer in the form of an array, in which the calcu-
lated Q values that match an observed value are marked
with an X (Table 9). From this scheme any additional
extinction is easily found by visual inspection. The
final results for these four lattices are given in Table 10.

Experiences and results

This program has been in use, in various stages of de-
velopment, since 1964. During that time quite a num-
ber of orthorhombic, monoclinic and triclinic com-
pounds have been indexed correctly. None of these
results have been published alone, they are incorpo-
rated in data sent by our laboratory to the Joint Com-
mittee on Powder Diffraction Standards for inclusion
in the X-ray Powder Data File (ASTM-index). Some
examples are given in Table 11.

The program proper is chiefly an administrative pro-
gram; steps 2, 3, 4 and 5 of the section The program
are separate procedures (subroutines). The computer
used is a Telefunken TR4 computer (effective memory
20000 words of 52 (48) bits, cycle time 1 u sec, addi-
tion 11 usec, multiplication 30 y sec). The longest
computing time on record up to now is 6 minutes;
the usual time is less than 3 minutes.

The most frequent reason for failure in obtaining a
correct reciprocal lattice is the inaccuracy of the input
data. The errors in the diffraction angles should not
exceed 0-03° (26). The first three lines especially
should be as accurate as possible. Frequently it is pos-
sible to improve the Q values of the first lines with
the aid of their higher orders. In one case a set of good
diffractometer data failed to yield a good lattice. As a
zero-error of the instrument was suspected we added
0-02° to all 26-values, whereupon the program found
the correct lattice (confirmed later by single-crystal
work).

The next most frequent reason for failure is the in-
completeness of the input data. Systematic extinctions
are sometimes a nuisance but they do not make index-
ing impossible. A multitude of non-systematic extinc-
tions, however, can indeed make it impossible to find
the correct solution, especially if many of the low-angle
lines are missing.

It is a pleasure to thank Professor P.M. de Wolff
for his unfailing interest and his many valuable ideas,
without which this program would never have been
written.
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Table 9. The four best lattices

Only the first lattice is reproduced. It is printed in layers with
ascending k. The space group could be Pnam. The number of
non-systematic extinctions, however, does not make the -
glide plane very convincing.

0,3 447,13 1788,6 X
3170? 76511 210605
1271, 1748.8 X 3068,2 X
2R61,?

156,1 6ex,3 1944,7
474, 924.2 X 2262,6 %
1427,7 1674,9 x 3216,3
3017,3

£24,5 1074,6 2413,1 X
542,4 1389,5 x 2731,0 X
196,1 2343,2 X

1405,1 1852.2 X 3193,6
1723,° 2170.1

2676,7 3123,8 X

2497,% 2948,0

2815.,8 X 3262.9 X

Table 10. The end result

The columns should have the same headings as Table 8. After the new roun

have become equal. The figure of merit has improved considerably.
Reduction of the fourth lattice yields: 156-118, 318-061, 446911, 0, 0, 0.

317,310 186,421 447,142 6,000 0,000
317,911 ifs,42¢ 447,142 o,0n0 0,000
317,344 186,120 447,142 0,000 0,000
624,473 218,061 663,829 0,000 £24,194

d of parameter refinement the first three lattices

g,000 29,00¢ 29,904 6,000 254,000 P
0,000 20,000 29,994 6,000 5%2,000 P
0,000 28,000 29,196 6,000 664,000 P
0,000 13,000 50,564 6,800 122,800 P
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Table 11. Examples of the use of the program

Space
ala b/B cly Myo* group Confirmed
1 Cd4(OH)¢Br;* 7-513 10-031 6-856 295 Pmnn?t —_—
: 90 90 90
2 CuSeQ4.5H,0? 6-224 10-872 6-081 38 PT
97-76 107-07 77-15
3 U0, WO, 13-60 5-489 7-22 33 P2)/a Single crystal
90 104-49 90
4 As;05 8454 8-645 4-629 32 P2,2,2,? —
90 90 90
5 H;sAs3010° 5717 7:258 4-667 45 PT Single crystal
97-41 99-59 100-34
6 2H3As04.H,0O7 8-229 13-244 7-651 15 P2/a Single crystal
90 111-18 90
7 Na;Ca(CO3)2.5H,09 11-579 7776 11-207 35 I2/a Single crystal
Gaylussite 90 101-98 90 or Ia

* The values of My (figure of merit) are by themselves a confirmation of the correct indexing (de Wolff, 1968).

+ Space groups with a question mark are deduced from powder data. They denote the maximum of possible systematic extinc-
tions compatible with the data, e.g. P2;2,2; for As;Os excludes the presence of glide planes, but includes, for example, Pmm?2 as
the possible true space group.

2 Sample obtained from Mme L. Walter-Lévy (Walter-Lévy & Groult, 1966).

b 2@-values read by an inexperienced (new) assistant. Nevertheless the correct answer was found by computer. Isomor-
phous with CuSO4.5H,0 which gives an indirect conformation.

¢ Diffractometer data from a different laboratory. Example 2 of de Wolff (1968).

4 The program gave a subcell (only 12 lines indexed, ‘Mo’ =64!). The first unindexed line, however, had an indexed second
order, 102. Halving the appropriate axis gave the correct cell.

¢ Found independently of Worzala (1968).

I Found independently of Jost, Worzala & Thilo (1966).

lgl Mineral from Lake Tchaad, Central Africa. Determined independently of Monroe (1967). The program found the /-centred
cell.
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