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A biased Monte Carlo scheme for zeolite structure solution
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We describe a new, biased Monte Carlo scheme to determine the crystal structures of zeolites from
powder diffraction data. We test the method on all publicly known zeolite materials, with success
in all cases. We show that the method of parallel tempering is a powerful supplement to the biased
Monte Carlo. © 1999 American Institute of Physids$S0021-960609)50503-5

I. INTRODUCTION tering dataset for success, a dataset that usually is not obtain-
able from zeolite samples. Very few zeolite structures have
Zeolites continue to be synthesized at a furious pacepeen solved via conventional crystallographic methods,
Crucial to the development of the field of zeolite science iswhich indicates the limited applicability of this approach.
the ability to determine the structure of newly-synthesizedRecently, a few zeolites have been solved with electron dif-
materials: Structure is sought after not only to understand th&raction methods>*2 but this is a laborious approach.
performance of newly synthesized catalysts but also to pro- A direct, real-space method for zeolite structure solution
pose rational syntheses of homologous materials with taifrom powder diffraction data has been propo$&H:The ad-
lored performance. Roughly 118 framework structures have@antage of this method is that it requires only easily available
been reported, yet another several dozen distinct synthetwowder data, and it incorporates little preconceived bias of
zeolites remain unsolved in the patent literature. Perhapthe investigator in the structure solution scheme. In this ap-
soon the techniques of diversity synthesis will be introducedroach, simulated annealing with a simple Metropolis pertur-
to the field, with a tremendous explosion in the number ofbation step is used to minimize a zeolite figure of merit. This
new, unsolved synthetic zeolites. approach has a nearly 90% success rate on materials with 6
Zeolites are crystalline microporous materials that haveor fewer crystallographically-distinct T-atoms. To date, at
found a wide range of uses in industrial applications. Theyleast four other groups have used this approach to solve new
are used as catalysts, molecular sieves, and ionzeolite structure$=*° On more complex structures, how-
exchanger$-° A typical example is ZSM-5, shown in Fig. 1, ever, the method becomes unwieldy, generating many hypo-
and used as a cracking co-catalyst in the refinement of crudéietical structures and often failing to find the correct one.
oil. The pore structure of this particular zeolite is three- In this paper, we apply powerful new ideas from Monte
dimensional, as is that of the zeolites chabazite, A, X, Y, andCarlo to the problem of zeolite structure solution via powder
beta®’ but there are zeolites with one-dimensional poresdiffraction data. The key step is to define a cost function that
such as cancrinite, zeolite L, and AIRS, and two- is a function of the atomic positions within the crystalline
dimensional pores, such as decadodecasil 3R, TNMBE,  unit cell and that is minimized by the structure corresponding
and heulandite. Classical zeolites are aluminosilicates. Tht® the experimental material. Structure solution from powder
basic building block is a TQtetrahedron. Usually ¥Si, data is a fundamentally challenging problem, due to the pres-
although substitution of the silicon with aluminum, phos-ence of many local minima and large barriers in the cost
phorus, or other metals is common. The tetrahedral species fgnction. We show that a combination of simulated anneal-
commonly denoted by T when one is concerned with strucing and biased Monte Carlo is able to overcome the barriers
tural, rather than chemical, properties of the zeolite. in most cases. In the most difficult cases, we show that the
The derivation of an atomic-scale model of the frame-new method of parallel tempering is superior to simulated
work crystal structure of a newly-synthesized zeolite is aannealing and is able to overcome the barriers. This paper is
nontrivial task. The difficulty stems primarily from the poly- organized as follows. In Sec. Il we introduce the figure of
crystalline nature of most zeolite samples, with crystallitemerit for an unknown zeolite sample. In Sec. lll we discuss
sizes typically below um. Notable improvements in single- the Monte Carlo sampling of this figure of merit. In Sec. IV
crystal diffraction techniques have been made, primarilywe show the results of applying our method to all publicly
through the use of synchrotron x rays, but fundamental limiknown zeolites. In Sec. V we discuss the results of the
tations still exis€° A typical powder pattern is shown in Fig. method and possible extensions. We draw our conclusions in
2. Most zeolites have been solved to date through physicdbec. VI.
model building efforts. A limited number of zeolites have
been solved with conventional crystallographic methods“_ THE FIGURE OF MERIT
(e.g., see Ref. 10 for a complex exampl&hese methods
attempt to deconvolute the powder diffraction data into  For a given zeolite sample with known unit cell size, cell
unique reflections and then apply direct methods to deterparameters, symmetry, and density we want to construct a
mine a structure. This approach requires a high quality scafigure of merit. By definition, the global minimum of the
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FIG. 3. A typical tetrahedral structur@is the T-T-T angle, and is the T-T
distance.

«a; are the relative weights. These weights are optimized ac-
FIG. 1. The framework structure of ZSM«{B/FI), from Ref. 50. cording to the rate of success of the method on one trial
structure and are generally kept fixed in the following.

figure of merit should correspond to the structure of the zeo- |t Must be stressed thad is not the thermodynamic
lite sample that we are investigating. Thgyque Unique at-  €N€T9Y: For one, we neglect the bridging oxygens and any

oms are placed in the unit cell. Each of gy, symmetry cations or adsorbed molecules that may be present in the real
operators generates an atom position when applied to Zeolite. Furthermore, we will see that the geometric terms of

unique T-atom, and so there are at magt . n atom H do not describe interactions or pseudo-interactions, but are
] qu symm . . . .
positions in the unit cell. The figure of merit is a function of constructed to reproduce a distribution of distances and

all of these parameters. We keep fixed the cell parameter@ndles observed in known zeolites. We enforce the space

the space group symmetry, and the number of uniqué;roup symmetry, and so symmetry-related T-atoms move

T-atoms: the only variables are the positions of the T-atom&ollectively. In addition, we enforce crystalline order so that
in the unit cell. The figure of merit is defined as we can limit our description of the material to a single unit

cell.
H=arsHr1+arrHr s+ arrnHgrnt apHp One may wonder whether the explicit inclusion of bridg-
ing oxygens, or whether a more detailed, quantum mechani-
cal description of the system, may be needed for an accurate
+ apnoHpen - (1)  description of the zeolite. In fact, Eql) captures the rel-
The figure of merit is defined for any arrangement 0fevant features necessary tp describe and to predict t.he frame-
T-atoms, even ones that are far from resembling a SeolitaVOrk structure of the zeolite crystal. Once the positions of
The lower the value off, the more the structure resembles athe T-atoms are available, one can use more refined methods

zeolite of the given cell size, symmetry, and density. In gen-"’md more detailed models to refine the structure or to study

eral, one starts from a random configuration of T-atoms ané)ther properties that may be of interest.

seeks the minimum of by moving the T-atoms sutably. o o2t (R 0 CHECE B 2 B e e
Each term inH represents a particular contribution, and the 9 ' y ’

terms. The first three terms bf are geometric, and they are
obtained by histogramming the T-T distances and the T-T-T

+ayHp+ aycHuct angHne+ apxoHexp

100 angles of 32 known high silica zeolités* The T-T distance
is sharply distributed around 3.1 A, and the T-T-T angles are
80 | distributed around 109.5°, as one would expect for a tetra-
hedrally coordinated species. The angles and distances are
60 | shown in Fig. 3. The angl€T-T-T) is the average of all of

the angles around a given T-atom. We are interested in sam-

pling configuration space according to Boltzmann statistics.

This leads us to define potential energies that reproduce the

observed histograms when sampled according to-egpl)

at a particular value of the inverse temperat@re 1/T. For

J simplicity, we set Boltzmann’s constant to unity. In practice

we take the logarithm of the histogrammed data and fit a
spline through them. The potential energies are then ex-
5 10 15 20 25 30 35 tended to ranges of angles and distances beyond the observed

Diffraction Angle ones. The resulting curves are shown in Figs),4(b), and

FIG. 2. A simulated powder x-ray diffraction pattern for the zsMmgrl)  4(C). The correct histograms are obtained only when the dis-

framework, from Ref. 50. tribution is sampled at the inverse temperat@nesed for the

40 |

20 |
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exactly on a special position. Therefore, we define a merging

100 400 b) range with a typical value of,,=0.8 A. Two or more
200 200 | 1 symmetry-related atoms that fall within this distance are
ol ol merged. When this condition occurs, all the atoms that fall
within the range are replaced by a single atom at the position
-2001 > 3 2 -20050 100 150 200 of thglr center of mass. The merged position is not a new
rA) 0 () posmon_ for the sysf[em; it is merely the position usv_ad for the
calculation of the figure of meritd,, gives a negative, fa-
. . vorable energy to merged atoms. This energy is linearly pro-
400 1 400} portional to the merging distance, i.e., the distance between
200 | c) the orig_inal and Fhe merged_ppsition. Merging must be fa-
200 | vored since the figure of merit is proportional to the number
or of atoms in the unit cell, and placing an atom on a special
200 , , 0 ) , positiop Iowgrs the number of actual atoms in the _unit_ cell
50 100 150 200 1 2 3 4 and will typically remove a favorable energy contribution.
8(%) r(R) Merging is necessary whenever the number of T-atoms de-

_ _ rived from the experimental densitp,, is fewer than the
FIG. 4. (a) The T-T potential energy(b) the T-T-T angle potential energy, . .
(c) the(T-T-T) average angle potential energy, il the repulsive poten- ”!meer created by Symmetry"uniquex Nsymm: Merglhg 1S
tial energy for nonbonded neighbors. disallowed wheneveny=ny,iqueX Nsymm- If merging is al-
lowed, the number of T-atoms in the unit cell can change. In
fact since the contributioid,, that favors merging is nega-
inversion. This value is arbitrary and simply defines whattive, there are situations in which some atoms collapse on a
low temperature means. highly symmetric special position, lowering the density far
TheHyg andH,, terms account for the 4-connectednesshelow the observed one. In order to enforce the observed
of silicates. These terms are defined to be nonzero and postensity we include the term
tive whenever a T-atom happens to have greater than or
fewer than 4 first neighbors, respectively, where a neighbor Hp=(ny— No)?, 2
is defined as an atom closer than 4 A. If the number of

neighbors is fewer than 4, we simply assign a progressivel)zvqgfé?nng is the actual number of atoms in the unit cell after

larger weight to the atom. Following Ref. 14 we use the W di technical details of the fi ¢
values in Table I. The case in which there are more than 4 it tehnov(\j/ f_|scgssssometec nlcat; € alls'tod _etrllgure °
neighbors is treated differently. We define a list of tRe merit thus detined. symmetry can be exploited in the com-

neighboring atoms. We choose 4 of them and treat them é%utatmn of the figure of merit in several ways. Symmetry-

connected neighbors, adding the contributions from the por—elarzz?n atf[)r:n?nwnl hf;]ve tr;ersan;e gi(renometnc t?rtrzuctl{[rr]e sur-
tential energies discussed above. We include a repulsive p59u g them, so the energy is simpligmn times the

tential energy, Fig. @), for the remaining unconnected energy ofasingle_atom, unI_ess merging has occurred. In any
neighbors. Since it is important to choose the best connectett-" thtﬁ e”eTtgy 'ﬁ p_)rroportlogal toﬂ:he a;:tulalt_num?(:rr] of at-
neighbors for a configuration, we exhaustively search for th@MS 1N the unit cell. 10 speed up '%eF calculation of the en-

combination of 4 connected ard—4 unconnected atoms ©€'9Y: We divide the unit cell with a gritf. Each atom belongs

that minimizes the energy associated with the ceftratiom. to a box in the grid, and the grid is designed so that first

In our experience, this procedure gives better results thaﬂe'ghbors to an atom will be in the same box as the atom or

does simply picking the neighbors according to their distancd one of the 26 neighboring boxes. The computational effort

H 2
or bonding all neighbors indiscriminately and assigning an? calculate the energy is reduced fro@(nyyq,9 t0

extra weight to over-coordinated atoms. O(Nyniqud through use of the grid. The grid must be updated

TheH,, term favors merging. Merging occurs in crystals every.tlme an atom s .moved, but since qnly one unique
atom is moved at one time, we creatgiqe distinct grids.

whenever a particular atom sits on a special position, a po-, . i . .
sition invariant under one or more symmetry operationsThIS allows us to.update only the grid associated with a
other than the identity. Since our method assigns positions i oyed atom, Ieawng the others unchanged and further re-
a stochastic way, it is unlikely that we would find an atom ucing the comp.utatlonal. effort U.SEd per attempted move,
The figure of merit we defined is highly nonlocal. Symmetry
operations applied to the position of the unique atom can, in
TABLE I. The terms inH,, for T-atoms according to the number of neigh- principle, generate atoms anywhere in the unit cell. This
bors. means that the energy for all of the unique atoms must be

recalculated every time a single unique atom is moved.

Neighb Weigh . ) ) ;
elgnbors elgnt The diffraction termsHpyxp and Hpyp, incorporate in
0 1000 the figure of merit experimental information that may be
1 650 available about the zeolite. A typical PXD pattern is shown
2 300 - .
3 100 in Fig. 2. Let us assume that a skilled crystallographer has
=4 0 collected high resolution powder x-ray scattering data on a

zeolite powder sample and has succeeded in indexing the
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resulting pattern. We then have available a list of Bragg re- 1 Ei(lfbs—slfa")zlwi
flections with Miller indices bkl) and relative intensities. Hpxp=13 Min S o : )
For a given arrangement of atoms in our model unit cell, we s e

can compute the relative intensities for the same list of re-

. . : : wherei runs over all of theN peaks, which may be compos-
f!ectpns using standarq formul&%‘.l’he intensity of a reflec- ites, thew,; are the weights, and is a global scaling factor.
tion, in arbitrary units, is given by

We make a similar definition for any available neutron data.
I(hkl)=p(0)|Fpul?, (3)  The intensities are relative, and we scale the experimental

intensities so that the largest one is 1000. The explicit ex-
where 2 is the angle of the Bragg reflection, and the firstpression for the global scaling fact@y,, is

factor is the polarization term. The polarization term is

p(6) =[1+co(26)][2 sin@)sin(26)] for x rays andp(6) =, (1909849,
=1/ 2 sin(@)sin(26)] for neutrons. The scattering amplitude Smin= >i(15992/ ;- ®
123
is
N The weightsw; are associated to each peak according to the
3 2 . following criterion: if the scaled intensity is less than 90
Fhk'_; Fi(k)o; exp(—Bjk“/4)exp(ik-x;), @ =1: if 90<1,<150, w;,=2: if 150<1,<300, w;—=3: and
;=4 otherwise. These weights account for uncertainty both
where in the data and our fit to the data, both roughly proportional
k=hb,+kb,+1bs, 5) to the intensity itself.

The numerical implementation of the calculation of the
X; = mfl)aﬁ mfz)a2+ m}?’)ag. (6) diffraction terms can exploit the presence of the space group
. symmetry. Since we move one unique T-atom at a time, only
Here, thea, are the crystal axes, tmal(') are the crystallo- the contribution of the unique T-atom and of all of its sym-
graphic coordinates, and the are the reciprocal lattice vec- metric images will change ikl pyp andHpyp. TO calculate
tors. Thef;(k) are the form factors for the given atomic energy changes, only these terms need to be re-evaluated.
species” the o; are the occupancy numbers, which accountWe can express the sum Eg) in the following way:
for cell positions not always filled with an atom or filled with
atoms of different type with different probabilities; and the FhkFZ EO)
B; are the isotropic Debye-Waller factors that account for hki»
thermal vibrations in the lattice. 9
Our description of the contents of the cell is approxi- .
mate, since the oxygens and cations are excluded. Also, Fm:gy fj(k)o; exp(—Bk*/4)exp(ik-x;).
since the structure of the crystal is unknown, we do not have
information about the occupancies or Debye-Waller factorsOnly one of the terms of the first sum changes when a single
Therefore, we seb;=1 andB;=1/2 in all our trials. These unique T-atom is moved.
limitations imply that our calculated diffraction pattern can- A good choice of the weighta; in Eq. (1) is crucial for
not exactly match the observed one even if we locate perthe success of method. The diffraction terms are very sensi-
fectly all of the framework T-atoms. Nonetheless, we cartive to the positions of the atoms. In other words, they make
capture the relevant features of the pattern. The contributiofor a very rough energy profile. Even a small change in the
of the oxygens to the diffraction pattern is less importantposition of one atom and its symmetric images can change
than that of the silicons, sinck is roughly proportional to  Hpyxp and Hpyp substantially. The geometric potentials of
the atomic number. Indeed, it proves better to leave the oxyFig. 4 are quite smooth. The density terms are also relatively
gens out than to include them at the midpoints between themooth, even when the move involves a change in the merg-
T-atoms. The contribution of nonframework species to thang. We want to mix the geometric terms with the diffraction
reflection intensities is suppressed since they usually havierms in such a way that the roughness of the diffraction
large Debye-Waller factors, being more loosely bound tharterms is smoothed out. In order to find the best values of
the framework species, and often have fractional occuparthese weights, we tried several different combinations on one
cies. trial structure. It was reassuring to find that the rate of suc-
The presence of multiple reflections at angles closer thaness was not sensitive to small changes in the parameters. A
the resolution obtainable even with the best synchrotron ragood choice for thevpyp Or apyp Weight is between 1 and 2.
diation sources is one of the major challenges to the use dfhe diffraction terms are extensive, in the sense that the
powder data. This occurrence is common for zeolite samplesiumber of reflections is roughly proportional to the total
In order to compare the computed intensities with the experinumber of atoms, as are the other terms in the figure of
mental ones, we define a composite peak at the average angferit, but in few cases we found it necessary to increase or
and place all of the intensity of the multiple reflections into decrease their importance with respect to the other terms.
this composite peak. The values of these weights atig. =1, ar1.7=1, @1
To measure how well a particular configuration of =2.0, ang=1.5, anda =1. The merging ternH,, was in
T-atom positions can match the experimental powder patalmost all cases fixed to be zerorgi=0.8 A and— 300 at
tern, we define the quantity ru=0A, and the associated weight was setgt=1. The
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1000 - T - - metric unit, however, was found not to be necessary for the
success of the method.
700 |
lll. THE MONTE CARLO
H 400 \ In this section we will describe in some detail the Monte
Carlo algorithm that we use to sample the figure of merit.
100 ¢ We will first make some general comments about biased
Monte Carlo importance sampling. We then describe simu-
=200 - T lated annealing and parallel tempering.
Monte Carlo methods have been used extensively since
-500 : : : ' their inceptioR® to sample equilibrium probability distribu-
0 0.2 0.4 0.6 0.8 1 : ]
@ tions of systems with many degrees of freedom. The key step
m, is to define a Markov process that evolves the system from

configuration to configuration. As long as this Markov pro-
cess satisfies certain properties, one is assured thatNafter
steps, time averages will approximate ensemble averages to
within a relative error of 1YN. Specifically, if the Markov
process is ergodic and regular and satisfies detailed balance,

densit iahie I 4 30. in order t it can be shown that the limiting probability distribution is
ensity weighiap was usually aroun , IN OrGer1o ENSUre . e we seek. The proof uses the Perron-Frobenius theo-
that the proper density was reached at low temperatures.

. rem and the fact that a matrix obeying detailed balance has a

is sh in Fig. 5. Th ds t %omplete set of eigenvecto(see, for example, Ref. 26A
IS shown ‘in_Fg. . € curve corresponds 10 a on€s,, o general proof shows that the method need satisfy only
dimensional slice of the full profile, obtained by sliding one

dinate of T-at h it cell of th lit the weaker balance condition.
coordinate of one F-atom across the unit cell of the zeolite — 5q o the shortcomings of the traditional Metropolis

faujasite. The profile is very rough, with many narrow val- method is that it does not use any information about the

Ley?- It.t|s ctruc?l to notice tha(tjthte r;ﬁs'tl?nbofl th? f”‘tOm 'nft?ﬁenergy landscape around the current configuration when
aujasl ets ruchl:re(f)cgrgsepcl)? sfothe g Io'a ;r;ll'mmu;n ° | icking trial moves. Oftentimes, the proposed move brings
curve, at rougniymy - =0.5. [T we were solving this material, e gystem to regions of configuration space that are high in

fh's tpo_smon dwof["d ble thtehm|r1[|mutm thaglwe IW(:Eld fhave tofenergy, and the move is rejected. These rejected moves
ocate in order 1o solve the structure. Liearly the TIQuré Ol jar effective sampling of the Boltzmann distribution.

merit is very rough, and we will need a powerful simulation Biased Monte Carlo methods have been shown to im-
protocol to perform the many-dimensional global optimiza-prove sampling in many cases. They were originally intro-
tion. ) . ) . duced to lead to more efficient simulations of complex
The figure of merit defined by Eq1) may possess in- liquids?”~2° The basic idea is to probe the configurations
variance under translations of the unit cell in particular di'around the current one and pooposemoves that are more
rections.' This reflec'tg the fact thqt for some space grouﬂkely to be accepted. In our case the biased move proceeds
symmetries the position O.f the unit call may be arbitrary. o5 o105 Let us call the current configuratidn. We ex-
This is clear, for instance, in the case of the space group P actk random displacementd; , which definek proposed

:jn thls. space %roup, rt]he gnlt Cﬁ” gan b_e ’_"OVG]?' fr:eely n aIInew configurationsB; . These moves are extracted from a
irections, without changing the description of the system . \«cian distribution

Our figure of merit would be invariant under a simultaneous,

arbitrary, and continuous translation of the atoms. The space . exf —Ax{/(20?)]

groups that have this type of freedom are called polar, and Pi = [270?]%?

the directions in which the unit cell can be moved are the ) !

polar directions. In other instances, the atoms within the uniWe construct the Rosenbluth weight, defined as
cell can be moved a discrete amount in one direction, such as k

one-half of the unit cell, and still lead to the same crystal W(n)=2 exd —BH(B))], (11
structure. In both of these cases it is useful to eliminate these =1

translationally invariant modes. It is straightforward to iden-and we assign a normalized probability

tify a polar group and the polar directions and to define a ext_

projection operator that will restrict proposed moves to an pi”=exi — BH(By) /W(n) (12)
orthogonal subspace of the polar directions. It is enough tdéo each configuratioB; (see Fig. & We randomly select one
select one atom that can move only along the orthogonadf these configuration®,,, according to its probability. The
subspace to break the polar symmetry. In the case of unitonfigurationB,, is our proposed move. Clearly the lower the
cells with two or more choices of cell setting, such as occurgnergy is, the more likely the configuration will be selected.
in the framework LTL, the ambiguity can be eliminated by In order to satisfy detailed balance, we must modify the ac-
choosing an appropriate asymmetric unit and limiting theceptance probability of the proposed move. This requires us
movement of the unique T-atom to that cell. Use of an asymto calculate the likelihood of the reverse md®g—A;. The

FIG. 5. The figure of merit profile as a function of one crystallographic
coordinatem{), for the faujasite framework.

(10
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FIG. 6. The biased displacement move. In this des®, andB,,=B;. The @#
arrows represent the transition probabilities. el %M«
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Monte Carlo Step
super detailed balance condition, which ensures detailed bal-

ance. can be satisfied by defining a setkef1l new trial FIG. 7. An energy trace for a simulated annealing run. Only the portion
’ . . lati h li h is sh .

moves,A;, from the proposed configuratioB,,.*° The set ~"®2'V¢ 1© ihe anneaiing pase is shown

{A1,A;} defines the reverse Rosenbluth weight

K ber, N, of Monte Carlo steps. After thedé steps the tem-

W(0)=exd — BH(AD]+ >, exd—BH(A)], (13  perature is reduced according T6=«T, wherex<1, and
=2 this cycle is repeated until the temperature is such that most
and the normalized probability of selecting the reverse movéMonte Carlo moves are rejected, and the system is effec-

is tively frozen.
ext_ The width of the distribution of proposed moves,in

Po"=exi— BH(A)) JW(0). (14 Eq. (10), can be adjusted during the simulated annealing run.
The super detailed balance condition can now be written a$n general, for a fixed value of the temperature, one chooses

ANT(A—B.)acd A—B o so that a reasonable number of moves are accepted. We
m(AUT(A=Br)acdA—Bn) call the ratio of accepted to attempted moves the acceptance
=7(B,)T(B,—A;)acdB,—A,), (15 ratio g. On the one hand, if the trial moves are small, then

_ . N o most moves are acceptagk=1, but the effect on the energy
where m(A)eexil ~BH(A)] is the limiting distribution that is minimal, and the probability distribution is sampled inef-

we want to sample, and the probability of accepting the pro;_ . : :
posed move is ac&(;—B,). The forward transition prob- fectively. On the Ot.h er hand, if the trial moves are Iarge' th_en
. g . . most moves are rejected, and the sampling is also ineffective.

ability T(A—B,) is just the probability of selecting the con- . ; . )
int . ext In simulated annealing the issue of acceptance is further

fl%watlon' PPy, and the reverse transition probability is complicated by the fact that the temperature is changed. We

ext . e .

PoPo". The super deta|led‘ balance condition is then, found it convenient to fix a target acceptance radig,and to
acdA;—B,) (B, pat p*  W(n) adjust the size of the proposed move distributienso as to
acdB,—A;) = m(Ay) aﬁﬁxt: W(o)" (16) make the actuab=g;. In general we start with a large

_ o width, o=3 A, and we lower it during the annealing to val-

A reasonable choice for the acceptance probability is ues aroundr=0.5—1.0 A at low temperature. We use a pro-

W(n) portional control scheme
a8y =min| L | B o=oli+eg-ol, a9

This class of biased moves significantly improves the samto adjust o each time we reduce the temperature. Even
pling of our algorithm with respect to the simple Metropolis thougho lags with respect to the temperature, since we use
scheme. We found that a biased move vidth5 works well.  theg measured at the higher temperature, we found this con-
The figure of merit described in the previous sectiontrol scheme to be effective.
gives a quantitative measure of how well a particular ar-  The initial high temperature is found by fixing and
rangement of atoms resembles a zeolite. We are interested jrerforming short trial runs with a Metropolis Monte Carlo.
minimizing the figure of merit in order to find the most rea- We always start from a completely random initial condition.
sonable arrangements. Biased Monte Carlo alone is unable Tthe temperature is doubled until the fraction of accepted
sample efficiently the rough figure of merit at low tempera-moves during the trial run exceeds a given threshold value.
tures. Sampling can often be achieved, however, with simuwe found that a threshold @=0.5 is always sufficient to
lated annealing*3?In this approach, a series of simulations get to a high enough temperature. Once this initial stage is
at progressively lower temperatures is performed, and theompleted, we thermalize the structure at this fixed tempera-
distribution at each temperature is sampled using a Montéure with the biased moves. This ensures that we lose track of
Carlo method, with or without biasing. The simulation is the initial condition. We then start cooling the system ac-
started from a high temperature and the temperature is praording to a preset annealing schedule. In all but a few cases
gressively reduced according to an annealing scheme. we usedN=200 andx=0.8. A typical annealing energy
general the temperature is kept unchanged for a fixed nuntrace is shown in Fig. 7.
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We will show in Sec. IV how effective the combination
of simulated annealing and biased moves is in finding the Ts T A
correct frameworks of known zeolites. Typically one or a ;
few runs at most are needed to solve a structure. If the first i H
run is not successful, we try again with different initial po- L7 I Y
sitions and random seed, and eventually the correct structure T H i
is found. For complex structures with many unique atoms,
Nunique= 8, this approach sometimes fails to converge to the
correct structure within a reasonable time. Of course, one
could try to use different annealing schedules, or try with a
greater number of different initial conditions. In principle,
nothing prevents this method from finding the correct solu- Monte Carlo Step
tion. Nonetheless, slow equilibration is more than just a tech-
nical detail. For one, during simulated annealing the systenﬁ'G- 8._A sc_hema@ic drawing of the swapping taking place during a parallel
is not at equilibrium, since the temperature is reduced afmpering simulation.
regular intervals. For another, once the system falls in a local
minimum in the rough energy profilg=ig. 5), and the tem- _ _ _
perature is too low for the system to escape via fluctuations AS=AHC)HBH(C) = BH(C) ~ AH(C)
in a finite number of steps, the system is stuck. =(Bj—Bi)[H(C))—H(C))]. (2D
Oqe other mt_althod.sta_md§ out as a QOOd. candidate folro satisfy detailed balance, we accept the move with prob-
sampling probability distributions with complicated land- ability
scapes: parallel tempering. This method was developed as an
effective Monte Carlo procedure for the study of systems p=min[l,exg—AS)]. (22
with large free energy barrief$:3* This method was later
applied to spin glassés;*® self-avoiding random walk¥,38

Typically we consider swaps between adjacent temperatures,
j=i+1. For a good choice of temperatures, swaps will be

!attlce QCD,"and studies of biological mOIGCUIé%FOHOW' ._accepted with a significant probability. We show in Fig. 8 a
ing Ref. 36, we call the method parallel tempering, for IS s chematic drawing of the swapping process

similarity to simulated tempering, a related method also pro- Parallel tempering allows the system to escape local

goseltlj(. as an ||_”Inprovetrr1]1e6r;t ﬁon sm:ju!ated | an?eéi'mg. minima by swapping with the systems at higher temperature.
-walKing 1S a simifar method, ofien used in molecular op- - e chojce of temperatures should be such that the high tem-
tlmlzatlo?4groblems. J-walking is nqt an exact Monte. Carloperature,Tn, is great enough so that the extended ensemble
schemé** due to the non-Markovian reuse of configura- can effectively surmount the free energy barriers. The inter-

.tIOHS.. While none of the |mplementat|ons of pgrallel temper'mediate temperatures create a ladder that the system uses to
ing cited above is Markovian at the level of a single move, it

: ) . . limb over the barriers. It is important to notice that the
is a simple matter to make such an implementation. Indee(£

. . . xtended ensemble is precisely defined b . This
taking care with the definitions allows one to understand how, ¢ . example thaFt) systérgamples theyCSr?gnical en-

to optimize the parallel tempering method by more fre_'semble at temperaturg;. We satisfy detailed balance be-
quently updating the systems at lower temperature and W't@ause of Eq(22). The displacement and swapping moves are
longer autocorrelation times. clearly ergodic, in principle. If our moves are defined so as to

;—he idea of Pa“'l"”e' temEIerlng :js to Crc])nséldez.)]/(fstem?,t nEqroduce a Markov process, then we are guaranteed to sample
each in a canonical ensemble, and each at a different tenk. . o +onded ensemble in E49).

perature. We define the instantaneous configuration of sys-
temi at Monte Carlo step to beC;(t). Each systen has a
different temperatur@ ; <T,<---<T,, whereT; is the low
temperature that we want to sample, dnd..., T, are higher
temperature systems that aid in the sampling. The extend
canonical ensemble is given by

When there is more than one kind of update rule in a
Monte Carlo simulation, the moves must be seleatzat
domly in order to have a Markov chain on the level of a
single move** Of course, one is free to pick the relative
obabilities of selecting each type of move. Our implemen-
tation of parallel tempering selects the moves at random. We
n start by selecting one of the systems at random. We then
o=11 &, (190  randomly decide whether to make a swap move or a dis-
i=1 placement move. We have found that choosing a displace-
ment move 90% of the time leads to efficient sampling. If a
displacement move is selected, one of the unique atoms, cho-
sen at random, is updated. If a swap move is selected, we
< :{;} exf — BiH(C))]. (20 attempt to swap the chosen system with the system at higher
' temperature. Since the systems at low temperature are slower
We introduce a swap move, which proposes the exchange ¢6 evolve under the Monte Carlo sampling, we pick these
two copies at different temperatures. The proposed move isystems more frequently than the ones at higher temperature.
accepted according to the Metropolis rule. We compute th&Ve typically allow the two lowest temperatures to be up-
action difference that the swap move introduces, dated twice as frequently, leading to more swapping and

where; is the canonical partition function,
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more displacement moves for these systems. In the generR} RESULTS
case, the update frequencies should be proportional to the’
autocorrelation times of the respective systems, as measured To assess the usefulness of this structure solution
in the parallel tempering simulation. Each temperature alsonethod we test it on the 118 publicly known zeolite structure
has an associated, constant move amplitugehat is ad- types. For each of these materials, the chemical composition
justed at the onset in order to have a reasonable acceptanard the atomic positions are knoWA**>We describe here
ratio. We note that the swap move is very fast in computincghow the method fares on these known materials.
time, since the current energy of each configuration is stored. Since we do not have actual experimental diffraction in-
The initial conditions aren random arrangements of atoms. formation for most of these materials, we use the available
We do not thermalize the systems, since the parallel tempedata to construct synthetic x-ray diffraction patterns. The
ing swaps are very effective in arranging the configurationsavailable data include information about the unit cell size
according to their energies. A typical energy trace for a parand parameters, the space group symmetry, the type of atoms
allel tempering run is shown in Fig. 9. present in the unit cell, the atomic positions, the occupancies,
In general, one may be interested in averages of all thand the Debye-Waller factors. The reflections included in our
systems at the various temperaturgs, In this case, parallel diffraction pattern are the ones in the ranges829<<35°.
tempering can be used to study phase diagrams, and the athis excludes the low angle data, which usually have back-
ditional equilibration given by the swapping helps the sys-ground contributions, and the high angle data, which are usu-
tems at low temperature to sample the probability distribu-ally poorly resolved. The multiplicities of the peaks are ac-
tion effectively. We are specifically interested in the systemcounted for in the production of the powder patterns. We use
with the lowest temperature, which will hop between likely a wavelength ok =1.54056 A. We assume a crystallite size
zeolite structures until the one corresponding to the experief 1 um, which is typical for new zeolite samples. We as-
mental sample is found. We monitor the structure at lowessume that the data could be collected on synchrotron, and so
energy, and we stop when all the atoms are 4-coordinategle use instrument parameters appropriate for a beam line.
and the diffraction term indicates that a good match has beewith these assumptions, the diffraction pattern has a peak
found. resolution of approximateli (260)=0.06. We use this rela-
The choice of temperatures is very important in paralleltively conservative criterion when forming the composite
tempering. To determine them, it is useful to consider thepeaks. Of course, the multiplicities of the peaks were ac-
energy fluctuations. We plot the energy histograms of theounted for in the production of the powder patterns. We
Monte Carlo data for a parallel tempering run, and we converified that we could reproduce the intensities obtained with
struct the temperature ladder so that the histograms overlaperius2, such as the ones in Fig. 2. In the cases where the
significantly. A typical example is shown in Fig. 10. A good framework topology can be described by a higher symmetry,
choice for the temperatures can usually be obtained from awe often, but not always, use the higher symmetry setting for
initial simulated annealing run. This allows us to locate thethe solution. This reduces the number of degrees of freedom,
freezing temperature, a high temperature, and a low temperaaaking the solution simpler and faster. As befang,q e IS
ture. If necessary, the temperature selection can be refined the number of crystallographically distinct T-atoms used in
ensure that the energy histograms overlap and that the copié®e simulated annealing, amg,, is the number of crystal-
traverse the temperature ladder in the parallel temperindographically distinct T-atoms in the maximal symmetry set-
This criterion leads to a ladder of temperatures that is autoting. In the cases where several zeolite samples are available
matically inferred from the properties of the system, ratherfor a given framework, we generate the diffraction pattern
than guessed or estimated. From Fig. 10, for example, it isising the material with the highest silicon content, or the
clear that the high temperatures can be spaced more widelgwest number of nonframework species.
than can the low temperatures. The result of applying the solution procedure to the
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TABLE Il. Results for zeolite frameworks A to &.

M. Falcioni and M. W. Deem

Code Symmetry Nunique Nimax Nsymm nr Nyuc® Nemc Npr
ABW Pna2; 2 1 4 8 1 1
ACO Im3m 1 1 96 16 1 1
AEI Cl2c1 6 3 8 48 183 1
AEL lbm2 6 3 8 40 - 2
AET Cmc2, 10 5 8 72 - 1
AFG P63;/mmc 3 3 24 48 80 4
AFI P6cc 2 1 12 24 1 2
AFO Cmcm 4 4 16 40 - 2
AFR Pmmn 4 4 8 32 — 1
AFS P3c1l 12 3 6 56 - - 1
AFT P31c 6 3 12 72 20 2
AFX P31c 4 2 12 48 - 1
AFY P3 4 2 6 16 20 4
AHT Cmcm 2 2 16 24 24 1
ANA la3d 1 1 96 48 20 1
APC Pbca 4 2 8 32 20 1
APD Pca2,; 8 2 4 32 - 1
AST F23 4 2 48 40 - 1
ATI R3 2 1 18 36 - 1
ATN 7 2 1 16 1 1
ATS Cmcm 3 3 8 24 - 1
ATT P2,2,2 6 2 4 24 1 1
ATV Acmm 2 2 16 24 1 1
AWW P4hccZz 4 2 16 48 20 5
BEA P4, 22 9 9 8 64 - 5
BEB C2lc 9 9 8 64 — 4
BIK P1 6 2 1 6 1 4
BOG Imma 6 6 16 96 40 3
BPH P321 6 3 6 28 116 6
BRE P2,/m 4 4 4 16 1 1
CAN P 63 2 1 6 12 1 1
CAS Ama2 3 3 8 24 20 4
CFlI Imma 5 5 16 32 - 2
CHA R3mMR 1 1 12 12 1 1
CON C 2/m 7 7 8 56 - 1
czpP P6,22 3 3 12 24 - 1
DAC C2/m 4 4 8 24 40 1
DFO P6/mmm 6 6 24 132 - 1
DOH P6/mmm 4 4 24 34 80 2
EAB P63/mmc 2 2 24 36 1 1
EDI P 2,2,2 3 2 4 10 1 1
EMT P6;/mmc 4 4 24 96 20 1
EPI C 2/m 3 3 8 24 1 3
ERI P6;/mmc 2 2 24 36 20 2
EUO Cmma 10 10 16 112 — - 1
FAU Fd3z 2 1 96 192 1 1
FER Immm 4 4 16 36 40 1
GIS P112/a 4 1 4 16 2 1
GME P6;/mmc 1 1 24 24 1 1
GOO P12,1 8 5 2 16 - 4

®The space group and the numlsgy,q,. Of crystallographically distinct T-atoms used in the structure solution

is listed for each zeolite framework. The number of distinct T-atoms in the maximal symmetry setijpg.is

The number of symmetry operators in the chosen settingjs,. The total number of T-atoms in the unit cell

is ny. The number of runs required to solve a given structure with Metropolis Monte Carlo and simulated
annealing isNyc, with a dash indicating no solution found. Each run used the same input parameters and
differed only in the initial random number seed. Similarly, the number of runs required to solve a given
structure with biased Monte Carlo and simulated annealindgc. Finally, Npyr is the number of runs
required to solve via biased Monte Carlo and parallel tempering those structures not solved with simulated

annealing.

From Ref. 14.
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TABLE Ill. Results for zeolite frameworks H to ¥.

Code Symmetry I']unique Nmax nsymm Ny NMCb NBMC NPT
HEU C2/m 5 5 8 36 20 2

IFR C 2/m 4 4 8 32 - 1

ITE Cmcm 4 4 16 64 - 1

JBW Pmma 2 2 4 6 1 3

KFI Im3m 1 1 96 96 1 1

LAU C 2/m 3 3 8 24 - 1

LEV R 3m 2 2 36 54 20 2

LIO P 6m2 4 4 12 36 20 1

LOS P6;mc 2 2 12 24 - 1

LTA EFm3c 2 1 192 192 23 2

LTL P6/mmm 2 2 24 36 1 1

LTN E d3m 4 4 192 768 - 1

MAZ P63;/mmc 2 2 24 36 1 1

MEI P 635/m 4 4 12 34 80 5

MEL 14m2 7 7 16 96 - 6

MEP Pm3n 3 3 48 46 - - 1
MER Immm 2 1 16 32 20 1

MFI Pnma 12 12 8 96 - - 1
MFS Imm2 8 8 8 36 - - 1
MON l4,/amdZ 1 1 32 16 1 2

MOR Cmc2, 6 4 8 48 1 1

MTN Ed3m 3 3 192 136 - 1

MTT Pmmn 7 7 8 24 - 1

MTW C 2/m 7 7 8 56 - - 1
MWW P6/mmm 8 8 24 72 - - 3
NAT Fdd2 3 2 16 40 20 1

NES P12,/c1 17 7 4 68 - - 1
NON Fmmm 5 5 32 88 - - 1
OFF P6m2 2 2 12 18 1

PAU Im3m 8 8 96 672 - - 2
PHI P12,/m1 4 2 4 16 20 1

RHO I m3m 1 1 96 48 1

RTE C2/m 3 3 8 24 1 1

RTH C 2/m 4 4 8 32 - 1

RUT P12,/a1 9 5 4 36 - 1

SAO 14m2 4 4 16 56 - 1

SAT R3m 2 2 36 72 - 1

SBE I 4/m m m 4 4 32 128 - 1

SBS P31c 8 4 12 96 - - 1
SBT R3m 4 4 36 144 - 1

SGT l4,/amdZz 4 4 32 64 20 1

SOD P43n 2 1 24 12 1 2

STI Cl2m1 5 4 8 36 40 4

TER Cmcm 8 8 16 80 - 1

THO Pncn 6 3 8 36 - 3

TON Cme, 4 4 8 24 - 1

TSC Fm3m 2 2 192 384 - 1

VET P4 5 5 4 17 - 1

VFI P6;/mcm 2 2 24 36 1 1

YUG Plc1l 8 2 2 16 2 2

3 egend as in Table II.
From Ref. 14.

known zeolites is shown in Tables Il and Ill. For each frame-identifies a given structure through its topology, rather than

work, we attempted a simulated annealing run with biasedhrough the precise locations of the atoms.

Monte Carlo moves. At the end of the run, we computed the In the cases where we were unable to solve the structure
coordination sequence of the unique atoms. The coordinatiom a few simulated annealing runs, we turned to parallel tem-

sequence is a list of integers that counts the number of neiglpering. Using the energy histograms collected at the various
bors one, two, and so on connections affajt uniquely  temperatures in the simulated annealing run, we set up a
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ladder of five or six temperatures, using the correspondindABLE V. Frameworks not attempted.
move amplitudesg;, from the simulated annealing. Using
parallel tempering we were able to solve all the structures
that we attempted. Depending upon the complexity of the -CHI CGF LoV WEI

Open With templates With heavy cations Other

structure, which is roughly proportional to the number of -CLO CGS RSN
atoms in the unit cell, a solution is achieved in 0.2—4 hona oN DDR Wiy
: ' -WEN ZON VSV

Silicon Graphics Indigbwith a 195 MHz R10000 processor.

V. DISCUSSION .
We encountered a few types of problems when testing

From the results shown in Tables Il and Ill we see thatour method on the known zeolites. In some cases the frame-
the introduction of biased moves in the simulated annealingvork has loops of length 3, with 3 T-atoms connected in a
dramatically improve the success rate of the method. Thériangle. Clearly the bond angles in this case are far from the
Nwc column refers to the number of simulated annealingusual tetrahedral value, and the potentials that we defined in
attempts needed to solve the structure with simple MetropoSec. Il may be incorrect for these particular structures. In
lis Monte Carlo moves, whil&gyc refers to the number of other words, the correct structure may not correspond to
attempts required with biased moves. It is apparent that iminimum of the geometric terms in the figure of merit. In
most cases the biased moves substantially improve the sartiiese cases, we found that a small adjustment of the geomet-
pling, allowing one to find the correct structure in fewer ric weights,«; in Eq. (1), is a sufficient remedy. These cases
trials. More importantly, the technical limitations encoun- can be recognized by a visual inspection of the structures
tered with Metropolis Monte Carl6 have been mostly re- produced, even with na priori knowledge of the correct
moved, since most structures not solvable with simple movestructure. The case of open frameworks, frameworks for
can be solved with biased moves. It must be noted that sewhich not all of the T-atoms are 4-coordinated, can be
eral of the structures shown in the tables were not known ateated by not penalizing 3-coordinated atoms. These frame-
the time Ref. 14 was published, and, arguably, some of thevorks are listed in Table IV.
simpler new structures could have been solved with Me- A few structures were harder to solve because of their
tropolis moves. Indeed, at least four groups have used thmerging. This is the case, for example, for MEP, PAU, and
Metropolis Monte Carlo approacfi,implemented in Ce- MWW. Let us consider MWW, which has,nigue= 8, Nsymm
rius2, to solve new zeolite structures2° Zeolite beta pro- =24, andn,=72. The difficulty in this case stems from the
vides an example of a well known and important zeolite thafact that two combinations of merged atoms give the same
can be solved with the biased Monte Carlo, but not withny: (12X5 atoms-4X3 atomg=72 atoms and (12x4
Metropolis Monte Carlo. The structures that were not solvedatomst-6x4 atom3=72 atoms. Many more combinations
with simulated annealing, and only these, were attemptedive numbers close to 72. The density teti}, of Eq. (1)
with parallel tempering. All were solved. From the successwill not distinguish between these combinations. This occur-
of this approach, it is clear that parallel tempering is a muchrence can be inferred by visually inspecting the configura-
more powerful method than simulated annealing. We believéions of minimum energy generated or by tabulating the
that parallel tempering is a much better method preciselywumber of merged atoms associated with each unique atom.
because it samples the correct equilibrium distribution. Again, no knowledge of the correct structure is needed to

The most complex of the publicly known zeolites is realize that the figure of merit has two or more deep wells
ZSM-5. The framework structure type is MFI, and it is separated by high barriers. The case of MWW s further
shown in Fig. 1. This structure is the most complex becauseomplicated by the presence of 3-loops and the presence of
it has the highest number of unique T-atomg,,,=12. We  two atoms which, although not connected, are separated by
were able to solve this structure in one day’s work that in-just 3.6 A. In the case of MWW only, we adjusted the pa-
cluded the simulated annealing run, selecting the parallalametersa; slightly, making ap small and reducing the
tempering temperatures, and performing the actual paralleange of the interactions. This allowed us to solve the struc-
tempering run. The energy traces for the latter are shown iture with 3 iterations of parallel tempering. Because of these
Fig. 9, and one can clearly see how the correct structure igeometric irregularities, MWW was actually the most diffi-
found in one of the high temperature systems and thewult structure for us to solve, even though it has only 8
swapped down to the lowest temperature system. It is alsanique T-atoms.
clear from the trace that without the swapping, the lowest  The presence of template molecules or heavy cations in
temperature system would never cross the energy barriethe structure may cause a greater problem. In this case, the
separating the initial condition from the correct structure. ToHpyp term favors the presence of a nonzero scattering den-
showcase the power of the method, we solved solved NU-8ity in the regions occupied by the nonframework species.
framework code NES, in a low symmetry setting with 17 This makes the diffraction term ambiguous, and one can find
unique atoms. This proves that parallel tempering is powermany incorrect structures that are still feasible from the point
ful enough that the use of the maximal symmetry setting iof view of geometry alone. The preferred solution in this
not required. Although an upper limit to the practical appli- case is to calcine the structure to remove the template or to
cability of this method must exist, that limit is not obvious exchange the heavy cations for lighter ones. If the material is
from the results of our trial runs. not stable to this treatment, then the nonframework species
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can be included as degrees of freedom in the figure of meritern of newly made materials. The generation capability may
Zeolites with metal substitutions are quite common. Sev-also be directed, by, for example, specifying large pores,
eral of the structures that we solved are aluminophosphatdew-densities, or other interesting functional properties. Such
or contain gallium, beryllium, cobalt, or zinc along with use allows the creation of hypothetical zeolites with new,
phosphorus. The effect of substitutions is quite dramatictailored structures. These structures can then be sought in
both on the geometry and on the diffraction. In fact, pre-rational synthese®. The direct, real space approach may
ferred bond lengths may change. The fact that the atomialso be applied to small, low quality molecular crystdls,
species are different usually lowers the maximal symmetrysuch as those from drugs, dyes, pigments, and organic non-
allowed, and hence increases the number of unique atomknear optical materials, for which only powder diffraction
We solved all known instances of these materials using juslata are available.
silicon to match the diffraction data. When possible, we used  Perhaps of more general interest to the simulation com-
the higher symmetry allowed by assuming that all T-atomamunity is the value of our work as a case study on the effec-
are identical in the structure determination. Of course, itiveness of parallel tempering. We have shown that parallel
would be straightforward to simulate frameworks with dif- tempering, combined with biased Monte Carlo, is a powerful
ferent T-atoms and to include an atom exchange move in thmethod for molecular systems with many local minima. We
Monte Carlo. This move, selected at random, would be achave suggested a general and simple histogram method to
cepted with a Metropolis criterion, and would lead to struc-determine the temperatures required in the extended en-
tures with the correct framework and the correct atomic spesemble. By considering how the energy histograms overlap,
cies in each position. The case of the framework WEI,we generally expect that, away from critical points, the num-
weinebeneite, is separate since this is a beryllium phosphatber of required temperatures is proportional [1,,,(N)
and the bond lengths are quite different from regular alumi— Eq(N)]/{N, whereN is the number of degrees of free-
nosilicates. A simple redefinition of the geometric terms indom,E, is the energy at the temperature of interest, Bpgl
Fig. 4 would allow us easily to solve this material. A generalis the energy at which the system can overcome all relevant
extension would be to allow for species with different coor-barriers. How the number of required temperatures scales
dination numbers as well as different T-T distance and T-T-Twith system size will depend entirely on hol,, scales
angle potentials. This extension would broaden the range ofith N. In simple casesE,, may scale as a correlation
applicability of the method well beyond zeolites. volume. In the worst casé&,,,;, will scale asN, and so the
The issues of thermalization, autocorrelation times, andumber of temperatures will be proportional {&. By for-
efficiency are usually addressed in numerical simulatiormulating the method as a Markov process on the level of a
studies. In our case, we are concerned with these elementssingle move, we were able to provide a general and more
a qualitative sense only. In fact, all that matters for the utilityefficient strategy for the choice of the individual system up-
of our method is that it determines the structure of an undate frequencies. Based upon our experience with zeolite
known material in a reasonable amount of time. We havestructure solution, we recommend use of parallel tempering
shown that this time is very reasonable and very small comwhenever simulated annealing struggles on a minimization
pared to the time it takes to synthesize a new zeolite. Theroblem, especially if correct sampling of a low-temperature
time taken by this approach should be compared to the timdistribution is desired.
it takes to solve a single structure with conventional meth-
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