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A biased Monte Carlo scheme for zeolite structure solution
Marco Falcioni and Michael W. Deem
Chemical Engineering Department, University of California, Los Angeles, California 90095-1592

~Received 20 August 1998; accepted 14 October 1998!

We describe a new, biased Monte Carlo scheme to determine the crystal structures of zeolites from
powder diffraction data. We test the method on all publicly known zeolite materials, with success
in all cases. We show that the method of parallel tempering is a powerful supplement to the biased
Monte Carlo. © 1999 American Institute of Physics.@S0021-9606~99!50503-5#
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I. INTRODUCTION

Zeolites continue to be synthesized at a furious pa
Crucial to the development of the field of zeolite science
the ability to determine the structure of newly-synthesiz
materials: Structure is sought after not only to understand
performance of newly synthesized catalysts but also to p
pose rational syntheses of homologous materials with
lored performance. Roughly 118 framework structures h
been reported, yet another several dozen distinct synth
zeolites remain unsolved in the patent literature. Perh
soon the techniques of diversity synthesis will be introduc
to the field, with a tremendous explosion in the number
new, unsolved synthetic zeolites.

Zeolites are crystalline microporous materials that ha
found a wide range of uses in industrial applications. Th
are used as catalysts, molecular sieves, and
exchangers.1–5 A typical example is ZSM-5, shown in Fig. 1
and used as a cracking co-catalyst in the refinement of c
oil. The pore structure of this particular zeolite is thre
dimensional, as is that of the zeolites chabazite, A, X, Y, a
beta,6,7 but there are zeolites with one-dimensional por
such as cancrinite, zeolite L, and AlPO4-5, and two-
dimensional pores, such as decadodecasil 3R, TMA-E~AB!,
and heulandite. Classical zeolites are aluminosilicates.
basic building block is a TO4 tetrahedron. Usually T5Si,
although substitution of the silicon with aluminum, pho
phorus, or other metals is common. The tetrahedral speci
commonly denoted by T when one is concerned with str
tural, rather than chemical, properties of the zeolite.

The derivation of an atomic-scale model of the fram
work crystal structure of a newly-synthesized zeolite is
nontrivial task. The difficulty stems primarily from the poly
crystalline nature of most zeolite samples, with crystal
sizes typically below 5mm. Notable improvements in single
crystal diffraction techniques have been made, prima
through the use of synchrotron x rays, but fundamental li
tations still exist.8,9 A typical powder pattern is shown in Fig
2. Most zeolites have been solved to date through phys
model building efforts. A limited number of zeolites hav
been solved with conventional crystallographic metho
~e.g., see Ref. 10 for a complex example!. These methods
attempt to deconvolute the powder diffraction data in
unique reflections and then apply direct methods to de
mine a structure. This approach requires a high quality s
1750021-9606/99/110(3)/1754/13/$15.00
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tering dataset for success, a dataset that usually is not ob
able from zeolite samples. Very few zeolite structures ha
been solved via conventional crystallographic metho
which indicates the limited applicability of this approac
Recently, a few zeolites have been solved with electron
fraction methods,11,12 but this is a laborious approach.

A direct, real-space method for zeolite structure solut
from powder diffraction data has been proposed.13,14The ad-
vantage of this method is that it requires only easily availa
powder data, and it incorporates little preconceived bias
the investigator in the structure solution scheme. In this
proach, simulated annealing with a simple Metropolis pert
bation step is used to minimize a zeolite figure of merit. T
approach has a nearly 90% success rate on materials w
or fewer crystallographically-distinct T-atoms. To date,
least four other groups have used this approach to solve
zeolite structures.15–20 On more complex structures, how
ever, the method becomes unwieldy, generating many hy
thetical structures and often failing to find the correct one

In this paper, we apply powerful new ideas from Mon
Carlo to the problem of zeolite structure solution via powd
diffraction data. The key step is to define a cost function t
is a function of the atomic positions within the crystallin
unit cell and that is minimized by the structure correspond
to the experimental material. Structure solution from powd
data is a fundamentally challenging problem, due to the p
ence of many local minima and large barriers in the c
function. We show that a combination of simulated anne
ing and biased Monte Carlo is able to overcome the barr
in most cases. In the most difficult cases, we show that
new method of parallel tempering is superior to simula
annealing and is able to overcome the barriers. This pap
organized as follows. In Sec. II we introduce the figure
merit for an unknown zeolite sample. In Sec. III we discu
the Monte Carlo sampling of this figure of merit. In Sec. I
we show the results of applying our method to all public
known zeolites. In Sec. V we discuss the results of
method and possible extensions. We draw our conclusion
Sec. VI.

II. THE FIGURE OF MERIT

For a given zeolite sample with known unit cell size, c
parameters, symmetry, and density we want to constru
figure of merit. By definition, the global minimum of th
4 © 1999 American Institute of Physics



eo

to

of
te
qu
m

o
lit
a

en
an
.
he

ac-
rial

any
real
of
are

and
ace

ove
at

nit

g-
ani-
rate

me-
of

hods
udy

ion
e
-T

are
tra-

are

am-
ics.

the

ce
t a
ex-

erved

is-

1755J. Chem. Phys., Vol. 110, No. 3, 15 January 1999 M. Falcioni and M. W. Deem
figure of merit should correspond to the structure of the z
lite sample that we are investigating. Thenunique unique at-
oms are placed in the unit cell. Each of thensymm symmetry
operators generates an atom position when applied
unique T-atom, and so there are at mostnunique3nsymm atom
positions in the unit cell. The figure of merit is a function
all of these parameters. We keep fixed the cell parame
the space group symmetry, and the number of uni
T-atoms: the only variables are the positions of the T-ato
in the unit cell. The figure of merit is defined as

H5aT-THT-T1aT-T-THT-T-T1a^T-T-T&H ^T-T-T&1aDHD

1aMHM1aucHuc1aNBHNB1aPXDHPXD

1aPNDHPND. ~1!

The figure of merit is defined for any arrangement
T-atoms, even ones that are far from resembling a zeo
The lower the value ofH, the more the structure resembles
zeolite of the given cell size, symmetry, and density. In g
eral, one starts from a random configuration of T-atoms
seeks the minimum ofH by moving the T-atoms suitably
Each term inH represents a particular contribution, and t

FIG. 1. The framework structure of ZSM-5~MFI!, from Ref. 50.

FIG. 2. A simulated powder x-ray diffraction pattern for the ZSM-5~MFI!
framework, from Ref. 50.
-
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a i are the relative weights. These weights are optimized
cording to the rate of success of the method on one t
structure and are generally kept fixed in the following.

It must be stressed thatH is not the thermodynamic
energy. For one, we neglect the bridging oxygens and
cations or adsorbed molecules that may be present in the
zeolite. Furthermore, we will see that the geometric terms
H do not describe interactions or pseudo-interactions, but
constructed to reproduce a distribution of distances
angles observed in known zeolites. We enforce the sp
group symmetry, and so symmetry-related T-atoms m
collectively. In addition, we enforce crystalline order so th
we can limit our description of the material to a single u
cell.

One may wonder whether the explicit inclusion of brid
ing oxygens, or whether a more detailed, quantum mech
cal description of the system, may be needed for an accu
description of the zeolite. In fact, Eq.~1! captures the rel-
evant features necessary to describe and to predict the fra
work structure of the zeolite crystal. Once the positions
the T-atoms are available, one can use more refined met
and more detailed models to refine the structure or to st
other properties that may be of interest.

The different contributions to Eq.~1! are of three types:
the geometric terms, the density terms, and the diffract
terms. The first three terms ofH are geometric, and they ar
obtained by histogramming the T-T distances and the T-T
angles of 32 known high silica zeolites.21,14The T-T distance
is sharply distributed around 3.1 Å, and the T-T-T angles
distributed around 109.5°, as one would expect for a te
hedrally coordinated species. The angles and distances
shown in Fig. 3. The anglêT-T-T& is the average of all of
the angles around a given T-atom. We are interested in s
pling configuration space according to Boltzmann statist
This leads us to define potential energies that reproduce
observed histograms when sampled according to exp(2bH)
at a particular value of the inverse temperatureb51/T. For
simplicity, we set Boltzmann’s constant to unity. In practi
we take the logarithm of the histogrammed data and fi
spline through them. The potential energies are then
tended to ranges of angles and distances beyond the obs
ones. The resulting curves are shown in Figs. 4~a!, 4~b!, and
4~c!. The correct histograms are obtained only when the d
tribution is sampled at the inverse temperatureb used for the

FIG. 3. A typical tetrahedral structure:u is the T-T-T angle, andr is the T-T
distance.
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inversion. This value is arbitrary and simply defines wh
low temperature means.

TheHNB andHuc terms account for the 4-connectedne
of silicates. These terms are defined to be nonzero and p
tive whenever a T-atom happens to have greater than
fewer than 4 first neighbors, respectively, where a neigh
is defined as an atom closer than 4 Å. If the number
neighbors is fewer than 4, we simply assign a progressiv
larger weight to the atom. Following Ref. 14 we use t
values in Table I. The case in which there are more tha
neighbors is treated differently. We define a list of theN
neighboring atoms. We choose 4 of them and treat them
connected neighbors, adding the contributions from the
tential energies discussed above. We include a repulsive
tential energy, Fig. 4~d!, for the remaining unconnecte
neighbors. Since it is important to choose the best conne
neighbors for a configuration, we exhaustively search for
combination of 4 connected andN24 unconnected atom
that minimizes the energy associated with the centralT atom.
In our experience, this procedure gives better results t
does simply picking the neighbors according to their dista
or bonding all neighbors indiscriminately and assigning
extra weight to over-coordinated atoms.

TheHM term favors merging. Merging occurs in crysta
whenever a particular atom sits on a special position, a
sition invariant under one or more symmetry operatio
other than the identity. Since our method assigns position
a stochastic way, it is unlikely that we would find an ato

FIG. 4. ~a! The T-T potential energy,~b! the T-T-T angle potential energy
~c! the ^T-T-T& average angle potential energy, and~d! the repulsive poten-
tial energy for nonbonded neighbors.

TABLE I. The terms inHuc for T-atoms according to the number of neig
bors.

Neighbors Weight

0 1000
1 650
2 300
3 100

>4 0
t
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exactly on a special position. Therefore, we define a merg
range with a typical value ofr M50.8 Å. Two or more
symmetry-related atoms that fall within this distance a
merged. When this condition occurs, all the atoms that
within the range are replaced by a single atom at the posi
of their center of mass. The merged position is not a n
position for the system; it is merely the position used for t
calculation of the figure of merit.HM gives a negative, fa-
vorable energy to merged atoms. This energy is linearly p
portional to the merging distance, i.e., the distance betw
the original and the merged position. Merging must be
vored since the figure of merit is proportional to the numb
of atoms in the unit cell, and placing an atom on a spec
position lowers the number of actual atoms in the unit c
and will typically remove a favorable energy contributio
Merging is necessary whenever the number of T-atoms
rived from the experimental density,n0 , is fewer than the
number created by symmetry,nunique3nsymm. Merging is
disallowed whenevern05nunique3nsymm. If merging is al-
lowed, the number of T-atoms in the unit cell can change
fact since the contributionHM that favors merging is nega
tive, there are situations in which some atoms collapse o
highly symmetric special position, lowering the density f
below the observed one. In order to enforce the obser
density we include the term

HD5~nT2n0!2, ~2!

wherenT is the actual number of atoms in the unit cell aft
merging.

We now discuss some technical details of the figure
merit thus defined. Symmetry can be exploited in the co
putation of the figure of merit in several ways. Symmetr
related atoms will have the same geometric structure
rounding them, so the energy is simplynsymm times the
energy of a single atom, unless merging has occurred. In
case, the energy is proportional to the actual number of
oms in the unit cell. To speed up the calculation of the e
ergy, we divide the unit cell with a grid.22 Each atom belongs
to a box in the grid, and the grid is designed so that fi
neighbors to an atom will be in the same box as the atom
in one of the 26 neighboring boxes. The computational eff
to calculate the energy is reduced fromO(nunique

2 ) to
O(nunique) through use of the grid. The grid must be updat
every time an atom is moved, but since only one uniq
atom is moved at one time, we createnunique distinct grids.
This allows us to update only the grid associated with
moved atom, leaving the others unchanged and further
ducing the computational effort used per attempted mo
The figure of merit we defined is highly nonlocal. Symmet
operations applied to the position of the unique atom can
principle, generate atoms anywhere in the unit cell. T
means that the energy for all of the unique atoms must
recalculated every time a single unique atom is moved.

The diffraction terms,HPXD and HPND, incorporate in
the figure of merit experimental information that may
available about the zeolite. A typical PXD pattern is show
in Fig. 2. Let us assume that a skilled crystallographer
collected high resolution powder x-ray scattering data o
zeolite powder sample and has succeeded in indexing
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resulting pattern. We then have available a list of Bragg
flections with Miller indices (hkl) and relative intensities
For a given arrangement of atoms in our model unit cell,
can compute the relative intensities for the same list of
flections using standard formulas.23 The intensity of a reflec-
tion, in arbitrary units, is given by

I ~hkl!5p~u!uFhklu2, ~3!

where 2u is the angle of the Bragg reflection, and the fi
factor is the polarization term. The polarization term
p(u)5@11cos2(2u)#/@2 sin(u)sin(2u)# for x rays andp(u)
51/@2 sin(u)sin(2u)# for neutrons. The scattering amplitud
is23

Fhkl5(
j 51

nT

f j~k!oj exp~2Bjk
2/4!exp~ ik•xj !, ~4!

where

k5hb11kb21 lb3, ~5!

xj5mj
~1!a11mj

~2!a21mj
~3!a3 . ~6!

Here, theai are the crystal axes, themj
( i ) are the crystallo-

graphic coordinates, and thebi are the reciprocal lattice vec
tors. The f j (k) are the form factors for the given atom
species;24 the oj are the occupancy numbers, which accou
for cell positions not always filled with an atom or filled wit
atoms of different type with different probabilities; and th
Bj are the isotropic Debye-Waller factors that account
thermal vibrations in the lattice.

Our description of the contents of the cell is appro
mate, since the oxygens and cations are excluded. A
since the structure of the crystal is unknown, we do not h
information about the occupancies or Debye-Waller facto
Therefore, we setoj51 andBj51/2 in all our trials. These
limitations imply that our calculated diffraction pattern ca
not exactly match the observed one even if we locate p
fectly all of the framework T-atoms. Nonetheless, we c
capture the relevant features of the pattern. The contribu
of the oxygens to the diffraction pattern is less importa
than that of the silicons, sincef j is roughly proportional to
the atomic number. Indeed, it proves better to leave the o
gens out than to include them at the midpoints between
T-atoms. The contribution of nonframework species to
reflection intensities is suppressed since they usually h
large Debye-Waller factors, being more loosely bound th
the framework species, and often have fractional occup
cies.

The presence of multiple reflections at angles closer t
the resolution obtainable even with the best synchrotron
diation sources is one of the major challenges to the us
powder data. This occurrence is common for zeolite samp
In order to compare the computed intensities with the exp
mental ones, we define a composite peak at the average a
and place all of the intensity of the multiple reflections in
this composite peak.

To measure how well a particular configuration
T-atom positions can match the experimental powder p
tern, we define the quantity
-
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HPXD5
1

N
min

s
F( i~ I i

obs2sIi
calc!2/v i

( i1/v i
G , ~7!

wherei runs over all of theN peaks, which may be compos
ites, thev i are the weights, ands is a global scaling factor.
We make a similar definition for any available neutron da
The intensities are relative, and we scale the experime
intensities so that the largest one is 1000. The explicit
pression for the global scaling factor,smin , is

smin5
( i~ I i

obsI i
calc!/v i

( i~ I i
calc!2/v i

. ~8!

The weightsv i are associated to each peak according to
following criterion: if the scaled intensity is less than 9
v i51; if 90,I i<150, v i52; if 150,I i<300, v i53; and
v i54 otherwise. These weights account for uncertainty b
in the data and our fit to the data, both roughly proportio
to the intensity itself.

The numerical implementation of the calculation of t
diffraction terms can exploit the presence of the space gr
symmetry. Since we move one unique T-atom at a time, o
the contribution of the unique T-atom and of all of its sym
metric images will change inHPXD andHPND. To calculate
energy changes, only these terms need to be re-evalu
We can express the sum Eq.~4! in the following way:

Fhkl5(
g

Fhkl
~g! ,

~9!

Fhkl
~g!5(

j Pg
f j~k!oj exp~2Bjk

2/4!exp~ ik•xj !.

Only one of the terms of the first sum changes when a sin
unique T-atom is moved.

A good choice of the weightsa i in Eq. ~1! is crucial for
the success of method. The diffraction terms are very se
tive to the positions of the atoms. In other words, they ma
for a very rough energy profile. Even a small change in
position of one atom and its symmetric images can cha
HPXD and HPND substantially. The geometric potentials
Fig. 4 are quite smooth. The density terms are also relativ
smooth, even when the move involves a change in the m
ing. We want to mix the geometric terms with the diffractio
terms in such a way that the roughness of the diffract
terms is smoothed out. In order to find the best values
these weights, we tried several different combinations on
trial structure. It was reassuring to find that the rate of s
cess was not sensitive to small changes in the paramete
good choice for theaPXD or aPND weight is between 1 and 2
The diffraction terms are extensive, in the sense that
number of reflections is roughly proportional to the to
number of atoms, as are the other terms in the figure
merit, but in few cases we found it necessary to increase
decrease their importance with respect to the other ter
The values of these weights areaT-T51, aT-T-T51, a^T-T-T&
52.0, aNB51.5, andaL51. The merging termHM was in
almost all cases fixed to be zero atr M50.8 Å and2300 at
r M50 Å, and the associated weight was set ataM51. The
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density weightaD was usually around 30, in order to ensu
that the proper density was reached at low temperatures

How the figure of merit depends on the atom coordina
is shown in Fig. 5. The curve corresponds to a o
dimensional slice of the full profile, obtained by sliding on
coordinate of one T-atom across the unit cell of the zeo
faujasite. The profile is very rough, with many narrow va
leys. It is crucial to notice that the position of the atom in t
faujasite structure corresponds to the global minimum of
curve, at roughlym1

(1).0.6. If we were solving this material
this position would be the minimum that we would have
locate in order to solve the structure. Clearly the figure
merit is very rough, and we will need a powerful simulatio
protocol to perform the many-dimensional global optimiz
tion.

The figure of merit defined by Eq.~1! may possess in
variance under translations of the unit cell in particular
rections. This reflects the fact that for some space gr
symmetries the position of the unit call may be arbitra
This is clear, for instance, in the case of the space group
In this space group, the unit cell can be moved freely in
directions, without changing the description of the syste
Our figure of merit would be invariant under a simultaneo
arbitrary, and continuous translation of the atoms. The sp
groups that have this type of freedom are called polar,
the directions in which the unit cell can be moved are
polar directions. In other instances, the atoms within the u
cell can be moved a discrete amount in one direction, suc
one-half of the unit cell, and still lead to the same crys
structure. In both of these cases it is useful to eliminate th
translationally invariant modes. It is straightforward to ide
tify a polar group and the polar directions and to define
projection operator that will restrict proposed moves to
orthogonal subspace of the polar directions. It is enough
select one atom that can move only along the orthogo
subspace to break the polar symmetry. In the case of
cells with two or more choices of cell setting, such as occ
in the framework LTL, the ambiguity can be eliminated b
choosing an appropriate asymmetric unit and limiting
movement of the unique T-atom to that cell. Use of an asy

FIG. 5. The figure of merit profile as a function of one crystallograp
coordinate,m1

(1) , for the faujasite framework.
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metric unit, however, was found not to be necessary for
success of the method.

III. THE MONTE CARLO

In this section we will describe in some detail the Mon
Carlo algorithm that we use to sample the figure of me
We will first make some general comments about bia
Monte Carlo importance sampling. We then describe sim
lated annealing and parallel tempering.

Monte Carlo methods have been used extensively s
their inception25 to sample equilibrium probability distribu
tions of systems with many degrees of freedom. The key s
is to define a Markov process that evolves the system fr
configuration to configuration. As long as this Markov pr
cess satisfies certain properties, one is assured that aftN
steps, time averages will approximate ensemble average
within a relative error of 1/AN. Specifically, if the Markov
process is ergodic and regular and satisfies detailed bala
it can be shown that the limiting probability distribution
the one we seek. The proof uses the Perron-Frobenius t
rem and the fact that a matrix obeying detailed balance h
complete set of eigenvectors~see, for example, Ref. 26!. A
more general proof shows that the method need satisfy o
the weaker balance condition.

One of the shortcomings of the traditional Metropo
method is that it does not use any information about
energy landscape around the current configuration w
picking trial moves. Oftentimes, the proposed move brin
the system to regions of configuration space that are hig
energy, and the move is rejected. These rejected mo
hinder effective sampling of the Boltzmann distribution.

Biased Monte Carlo methods have been shown to
prove sampling in many cases. They were originally int
duced to lead to more efficient simulations of compl
liquids.27–29 The basic idea is to probe the configuratio
around the current one and toproposemoves that are more
likely to be accepted. In our case the biased move proce
as follows. Let us call the current configurationA1 . We ex-
tractk random displacements,Dxi , which definek proposed
new configurations,Bi . These moves are extracted from
Gaussian distribution

pi
int5

exp@2Dxi
2/~2s2!#

@2ps2#3/2 . ~10!

We construct the Rosenbluth weightW, defined as

W~n!5(
i 51

k

exp@2bH~Bi !#, ~11!

and we assign a normalized probability

pi
ext5exp@2bH~Bi !#/W~n! ~12!

to each configurationBi ~see Fig. 6!. We randomly select one
of these configurations,Bn , according to its probability. The
configurationBn is our proposed move. Clearly the lower th
energy is, the more likely the configuration will be selecte
In order to satisfy detailed balance, we must modify the
ceptance probability of the proposed move. This requires
to calculate the likelihood of the reverse moveBn→A1 . The
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super detailed balance condition, which ensures detailed
ance, can be satisfied by defining a set ofk21 new trial
moves,Aj , from the proposed configuration,Bn .30 The set
$A1 ,Aj% defines the reverse Rosenbluth weight

W~o!5exp@2bH~A1!#1(
j 52

k

exp@2bH~Aj !#, ~13!

and the normalized probability of selecting the reverse m
is

po
ext5exp@2bH~A1!#/W~o!. ~14!

The super detailed balance condition can now be written

p~A1!T~A1→Bn!acc~A1→Bn!

5p~Bn!T~Bn→A1!acc~Bn→A1!, ~15!

wherep(A)}exp@2bH(A)# is the limiting distribution that
we want to sample, and the probability of accepting the p
posed move is acc(A1→Bn). The forward transition prob-
ability T(A→Bn) is just the probability of selecting the con
figuration, pn

intpn
ext, and the reverse transition probability

po
intpo

ext. The super detailed balance condition is then,

acc~A1→Bn!

acc~Bn→A1!
5

p~Bn!

p~A1!

po
int

pn
int

po
ext

pn
ext5

W~n!

W~o!
. ~16!

A reasonable choice for the acceptance probability is

acc~A1→Bn!5minS 1,
W~n!

W~o! D . ~17!

This class of biased moves significantly improves the sa
pling of our algorithm with respect to the simple Metropo
scheme. We found that a biased move withk55 works well.

The figure of merit described in the previous secti
gives a quantitative measure of how well a particular
rangement of atoms resembles a zeolite. We are interest
minimizing the figure of merit in order to find the most re
sonable arrangements. Biased Monte Carlo alone is unab
sample efficiently the rough figure of merit at low tempe
tures. Sampling can often be achieved, however, with sim
lated annealing.31,32 In this approach, a series of simulation
at progressively lower temperatures is performed, and
distribution at each temperature is sampled using a Mo
Carlo method, with or without biasing. The simulation
started from a high temperature and the temperature is
gressively reduced according to an annealing scheme
general the temperature is kept unchanged for a fixed n

FIG. 6. The biased displacement move. In this casek55, andBn5B3 . The
arrows represent the transition probabilities.
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ber, N, of Monte Carlo steps. After theseN steps the tem-
perature is reduced according toT85kT, wherek,1, and
this cycle is repeated until the temperature is such that m
Monte Carlo moves are rejected, and the system is ef
tively frozen.

The width of the distribution of proposed moves,s in
Eq. ~10!, can be adjusted during the simulated annealing r
In general, for a fixed value of the temperature, one choo
s so that a reasonable number of moves are accepted.
call the ratio of accepted to attempted moves the accepta
ratio g. On the one hand, if the trial moves are small, th
most moves are accepted,g.1, but the effect on the energ
is minimal, and the probability distribution is sampled ine
fectively. On the other hand, if the trial moves are large, th
most moves are rejected, and the sampling is also ineffec
In simulated annealing the issue of acceptance is fur
complicated by the fact that the temperature is changed.
found it convenient to fix a target acceptance ratio,gt , and to
adjust the size of the proposed move distribution,s, so as to
make the actualg.gt . In general we start with a large
width, s53 Å, and we lower it during the annealing to va
ues arounds.0.5– 1.0 Å at low temperature. We use a pr
portional control scheme

s85s@11e~g2gt!#, ~18!

to adjust s each time we reduce the temperature. Ev
thoughs lags with respect to the temperature, since we
theg measured at the higher temperature, we found this c
trol scheme to be effective.

The initial high temperature is found by fixings and
performing short trial runs with a Metropolis Monte Carl
We always start from a completely random initial conditio
The temperature is doubled until the fraction of accep
moves during the trial run exceeds a given threshold va
We found that a threshold ofg50.5 is always sufficient to
get to a high enough temperature. Once this initial stag
completed, we thermalize the structure at this fixed tempe
ture with the biased moves. This ensures that we lose trac
the initial condition. We then start cooling the system a
cording to a preset annealing schedule. In all but a few ca
we usedN5200 andk50.8. A typical annealing energy
trace is shown in Fig. 7.

FIG. 7. An energy trace for a simulated annealing run. Only the port
relative to the annealing phase is shown.
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We will show in Sec. IV how effective the combinatio
of simulated annealing and biased moves is in finding
correct frameworks of known zeolites. Typically one or
few runs at most are needed to solve a structure. If the
run is not successful, we try again with different initial p
sitions and random seed, and eventually the correct struc
is found. For complex structures with many unique atom
nunique>8, this approach sometimes fails to converge to
correct structure within a reasonable time. Of course,
could try to use different annealing schedules, or try with
greater number of different initial conditions. In principl
nothing prevents this method from finding the correct so
tion. Nonetheless, slow equilibration is more than just a te
nical detail. For one, during simulated annealing the sys
is not at equilibrium, since the temperature is reduced
regular intervals. For another, once the system falls in a lo
minimum in the rough energy profile~Fig. 5!, and the tem-
perature is too low for the system to escape via fluctuati
in a finite number of steps, the system is stuck.

One other method stands out as a good candidate
sampling probability distributions with complicated lan
scapes: parallel tempering. This method was developed a
effective Monte Carlo procedure for the study of syste
with large free energy barriers.33,34 This method was late
applied to spin glasses,35,36 self-avoiding random walks,37,38

lattice QCD,39 and studies of biological molecules.40 Follow-
ing Ref. 36, we call the method parallel tempering, for
similarity to simulated tempering, a related method also p
posed as an improvement on simulated annealin41

J-walking is a similar method,42 often used in molecular op
timization problems. J-walking is not an exact Monte Ca
scheme,34,43 due to the non-Markovian reuse of configur
tions. While none of the implementations of parallel temp
ing cited above is Markovian at the level of a single move
is a simple matter to make such an implementation. Inde
taking care with the definitions allows one to understand h
to optimize the parallel tempering method by more f
quently updating the systems at lower temperature and
longer autocorrelation times.

The idea of parallel tempering is to considern systems,
each in a canonical ensemble, and each at a different
perature. We define the instantaneous configuration of
tem i at Monte Carlo stept to beCi(t). Each systemi has a
different temperatureT1,T2,¯,Tn , whereT1 is the low
temperature that we want to sample, andT2 ,...,Tn are higher
temperature systems that aid in the sampling. The exten
canonical ensemble is given by

Q5)
i 51

n

Q i , ~19!

whereQ i is the canonical partition function,

Q i5(
$Ci %

exp@2b iH~Ci !#. ~20!

We introduce a swap move, which proposes the exchang
two copies at different temperatures. The proposed mov
accepted according to the Metropolis rule. We compute
action difference that the swap move introduces,
e
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DS5b jH~Ci !1b iH~Cj !2b jH~Cj !2b iH~Ci !

5~b j2b i !@H~Ci !2H~Cj !#. ~21!

To satisfy detailed balance, we accept the move with pr
ability

p5min@1,exp~2DS!#. ~22!

Typically we consider swaps between adjacent temperatu
j 5 i 11. For a good choice of temperatures, swaps will
accepted with a significant probability. We show in Fig. 8
schematic drawing of the swapping process.

Parallel tempering allows the system to escape lo
minima by swapping with the systems at higher temperatu
The choice of temperatures should be such that the high t
perature,Tn , is great enough so that the extended ensem
can effectively surmount the free energy barriers. The in
mediate temperatures create a ladder that the system us
climb over the barriers. It is important to notice that th
extended ensemble is precisely defined by Eq.~19!. This
means, for example, that systemi samples the canonical en
semble at temperatureTi . We satisfy detailed balance be
cause of Eq.~22!. The displacement and swapping moves a
clearly ergodic, in principle. If our moves are defined so as
produce a Markov process, then we are guaranteed to sa
the extended ensemble in Eq.~19!.

When there is more than one kind of update rule in
Monte Carlo simulation, the moves must be selectedran-
domly in order to have a Markov chain on the level of
single move.44 Of course, one is free to pick the relativ
probabilities of selecting each type of move. Our impleme
tation of parallel tempering selects the moves at random.
start by selecting one of the systems at random. We t
randomly decide whether to make a swap move or a
placement move. We have found that choosing a displa
ment move 90% of the time leads to efficient sampling. I
displacement move is selected, one of the unique atoms,
sen at random, is updated. If a swap move is selected,
attempt to swap the chosen system with the system at hi
temperature. Since the systems at low temperature are sl
to evolve under the Monte Carlo sampling, we pick the
systems more frequently than the ones at higher tempera
We typically allow the two lowest temperatures to be u
dated twice as frequently, leading to more swapping a

FIG. 8. A schematic drawing of the swapping taking place during a para
tempering simulation.
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more displacement moves for these systems. In the gen
case, the update frequencies should be proportional to
autocorrelation times of the respective systems, as meas
in the parallel tempering simulation. Each temperature a
has an associated, constant move amplitudes i that is ad-
justed at the onset in order to have a reasonable accep
ratio. We note that the swap move is very fast in comput
time, since the current energy of each configuration is sto
The initial conditions aren random arrangements of atom
We do not thermalize the systems, since the parallel tem
ing swaps are very effective in arranging the configuratio
according to their energies. A typical energy trace for a p
allel tempering run is shown in Fig. 9.

In general, one may be interested in averages of all
systems at the various temperatures,Ti . In this case, paralle
tempering can be used to study phase diagrams, and th
ditional equilibration given by the swapping helps the s
tems at low temperature to sample the probability distri
tion effectively. We are specifically interested in the syst
with the lowest temperature, which will hop between like
zeolite structures until the one corresponding to the exp
mental sample is found. We monitor the structure at low
energy, and we stop when all the atoms are 4-coordina
and the diffraction term indicates that a good match has b
found.

The choice of temperatures is very important in para
tempering. To determine them, it is useful to consider
energy fluctuations. We plot the energy histograms of
Monte Carlo data for a parallel tempering run, and we c
struct the temperature ladder so that the histograms ove
significantly. A typical example is shown in Fig. 10. A goo
choice for the temperatures can usually be obtained from
initial simulated annealing run. This allows us to locate t
freezing temperature, a high temperature, and a low temp
ture. If necessary, the temperature selection can be refine
ensure that the energy histograms overlap and that the co
traverse the temperature ladder in the parallel temper
This criterion leads to a ladder of temperatures that is a
matically inferred from the properties of the system, rath
than guessed or estimated. From Fig. 10, for example,
clear that the high temperatures can be spaced more w
than can the low temperatures.

FIG. 9. Traces of the energy in a parallel tempering run on MFI.
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IV. RESULTS

To assess the usefulness of this structure solu
method we test it on the 118 publicly known zeolite structu
types. For each of these materials, the chemical compos
and the atomic positions are known.6,21,45 We describe here
how the method fares on these known materials.

Since we do not have actual experimental diffraction
formation for most of these materials, we use the availa
data to construct synthetic x-ray diffraction patterns. T
available data include information about the unit cell s
and parameters, the space group symmetry, the type of a
present in the unit cell, the atomic positions, the occupanc
and the Debye-Waller factors. The reflections included in
diffraction pattern are the ones in the range 5°<2u,35°.
This excludes the low angle data, which usually have ba
ground contributions, and the high angle data, which are u
ally poorly resolved. The multiplicities of the peaks are a
counted for in the production of the powder patterns. We
a wavelength ofl51.54056 Å. We assume a crystallite siz
of 1 mm, which is typical for new zeolite samples. We a
sume that the data could be collected on synchrotron, an
we use instrument parameters appropriate for a beam
With these assumptions, the diffraction pattern has a p
resolution of approximatelyD(2u)50.06. We use this rela
tively conservative criterion when forming the compos
peaks. Of course, the multiplicities of the peaks were
counted for in the production of the powder patterns. W
verified that we could reproduce the intensities obtained w
Cerius2, such as the ones in Fig. 2. In the cases where
framework topology can be described by a higher symme
we often, but not always, use the higher symmetry setting
the solution. This reduces the number of degrees of freed
making the solution simpler and faster. As before,nunique is
the number of crystallographically distinct T-atoms used
the simulated annealing, andnmax is the number of crystal-
lographically distinct T-atoms in the maximal symmetry s
ting. In the cases where several zeolite samples are avai
for a given framework, we generate the diffraction patte
using the material with the highest silicon content, or t
lowest number of nonframework species.

The result of applying the solution procedure to t

FIG. 10. Histograms of the energies observed in a parallel tempering ru
MFI. Note the overlap of the distributions.
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TABLE II. Results for zeolite frameworks A to G.a

Code Symmetry nunique nmax nsymm nT NMC
b NBMC NPT

ABW P n a 21 2 1 4 8 1 1
ACO I m 3̄ m 1 1 96 16 1 1

AEI C 1 2/c 1 6 3 8 48 183 1
AEL I b m 2 6 3 8 40 – 2
AET C m c21 10 5 8 72 – 1

AFG P 63 /m m c 3 3 24 48 80 4

AFI P 6 c c 2 1 12 24 1 2
AFO C m c m 4 4 16 40 – 2
AFR P m m n 4 4 8 32 – 1
AFS P 3 c 1 12 3 6 56 – – 1
AFT P 3̄ 1 c 6 3 12 72 20 2

AFX P 3̄ 1 c 4 2 12 48 – 1

AFY P 3̄ 4 2 6 16 20 4

AHT C m c m 2 2 16 24 24 1
ANA I a 3̄ d 1 1 96 48 20 1

APC P b c a 4 2 8 32 20 1
APD P c a 21 8 2 4 32 – 1

AST F 2 3 4 2 48 40 – 1
ATI R 3̄ 2 1 18 36 – 1

ATN I 4̄ 2 1 8 16 1 1

ATS C m c m 3 3 8 24 – 1
ATT P 21 21 2 6 2 4 24 1 1

ATV A c m m 2 2 16 24 1 1
AWW P 4/n c c Z 4 2 16 48 20 5
BEA P 41 2 2 9 9 8 64 – 5

BEB C 2/c 9 9 8 64 – 4
BIK P 1 6 2 1 6 1 4
BOG I m m a 6 6 16 96 40 3
BPH P 3 2 1 6 3 6 28 116 6
BRE P 21 /m 4 4 4 16 1 1

CAN P 63 2 1 6 12 1 1

CAS A m a2 3 3 8 24 20 4
CFI I m m a 5 5 16 32 – 2
CHA R 3̄ m R 1 1 12 12 1 1

CON C 2/m 7 7 8 56 – 1
CZP P 61 2 2 3 3 12 24 – 1

DAC C 2/m 4 4 8 24 40 1
DFO P 6/m m m 6 6 24 132 – 1
DOH P 6/m m m 4 4 24 34 80 2
EAB P 63 /m m c 2 2 24 36 1 1

EDI P 21212 3 2 4 10 1 1

EMT P 63 /m m c 4 4 24 96 20 1

EPI C 2/m 3 3 8 24 1 3
ERI P 63 /m m c 2 2 24 36 20 2

EUO C m m a 10 10 16 112 – – 1
FAU F d 3̄ Z 2 1 96 192 1 1

FER I m m m 4 4 16 36 40 1
GIS P 1 1 21 /a 4 1 4 16 2 1

GME P 63 /m m c 1 1 24 24 1 1

GOO P 1 21 1 8 5 2 16 – 4

aThe space group and the numbernunique of crystallographically distinct T-atoms used in the structure solut
is listed for each zeolite framework. The number of distinct T-atoms in the maximal symmetry setting isnmax.
The number of symmetry operators in the chosen setting isnsymm. The total number of T-atoms in the unit ce
is nT . The number of runs required to solve a given structure with Metropolis Monte Carlo and simu
annealing isNMC , with a dash indicating no solution found. Each run used the same input parameter
differed only in the initial random number seed. Similarly, the number of runs required to solve a
structure with biased Monte Carlo and simulated annealing isNBMC . Finally, NPT is the number of runs
required to solve via biased Monte Carlo and parallel tempering those structures not solved with sim
annealing.

bFrom Ref. 14.
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TABLE III. Results for zeolite frameworks H to Y.a

Code Symmetry nunique nmax nsymm nT NMC
b NBMC NPT

HEU C 2/m 5 5 8 36 20 2
IFR C 2/m 4 4 8 32 – 1
ITE C m c m 4 4 16 64 – 1
JBW P m m a 2 2 4 6 1 3
KFI I m 3̄ m 1 1 96 96 1 1

LAU C 2/m 3 3 8 24 – 1
LEV R 3̄m 2 2 36 54 20 2

LIO P 6̄m2 4 4 12 36 20 1

LOS P 63 m c 2 2 12 24 – 1
LTA F m 3̄ c 2 1 192 192 23 2

LTL P 6/m m m 2 2 24 36 1 1
LTN F d3̄m 4 4 192 768 – 1

MAZ P 63 /m m c 2 2 24 36 1 1
MEI P 63 /m 4 4 12 34 80 5
MEL I 4̄ m 2 7 7 16 96 – 6

MEP P m 3̄ n 3 3 48 46 – – 1

MER I m m m 2 1 16 32 20 1
MFI P n m a 12 12 8 96 – – 1
MFS I m m 2 8 8 8 36 – – 1
MON I 41 /a m d Z 1 1 32 16 1 2
MOR C m c21 6 4 8 48 1 1
MTN F d 3̄m 3 3 192 136 – 1

MTT P m m n 7 7 8 24 – 1
MTW C 2/m 7 7 8 56 – – 1
MWW P 6/m m m 8 8 24 72 – – 3
NAT F d d 2 3 2 16 40 20 1
NES P 1 21 /c 1 17 7 4 68 – – 1
NON F m m m 5 5 32 88 – – 1
OFF P 6̄ m 2 2 2 12 18 1 2

PAU I m3̄ m 8 8 96 672 – – 2

PHI P 121 /m 1 4 2 4 16 20 1
RHO I m3̄m 1 1 96 48 1 1

RTE C 2/m 3 3 8 24 1 1
RTH C 2/m 4 4 8 32 – 1
RUT P 121 /a 1 9 5 4 36 – 1
SAO I 4̄ m 2 4 4 16 56 – 1

SAT R 3̄ m 2 2 36 72 – 1

SBE I 4/m m m 4 4 32 128 – 1
SBS P 3̄ 1 c 8 4 12 96 – – 1

SBT R 3̄ m 4 4 36 144 – 1

SGT I 41 /a m d Z 4 4 32 64 20 1
SOD P 4̄ 3 n 2 1 24 12 1 2

STI C 1 2/m 1 5 4 8 36 40 4
TER C m c m 8 8 16 80 – 1
THO P n c n 6 3 8 36 – 3
TON C m c21 4 4 8 24 – 1
TSC F m 3̄ m 2 2 192 384 – 1

VET P 4̄ 5 5 4 17 – 1

VFI P 63 /m c m 2 2 24 36 1 1
YUG P 1 c 1 8 2 2 16 2 2

aLegend as in Table II.
bFrom Ref. 14.
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known zeolites is shown in Tables II and III. For each fram
work, we attempted a simulated annealing run with bia
Monte Carlo moves. At the end of the run, we computed
coordination sequence of the unique atoms. The coordina
sequence is a list of integers that counts the number of ne
bors one, two, and so on connections away.46 It uniquely
-
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e
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identifies a given structure through its topology, rather th
through the precise locations of the atoms.

In the cases where we were unable to solve the struc
in a few simulated annealing runs, we turned to parallel te
pering. Using the energy histograms collected at the vari
temperatures in the simulated annealing run, we set u
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ladder of five or six temperatures, using the correspond
move amplitudes,s i , from the simulated annealing. Usin
parallel tempering we were able to solve all the structu
that we attempted. Depending upon the complexity of
structure, which is roughly proportional to the number
atoms in the unit cell, a solution is achieved in 0.2–4 h o
Silicon Graphics Indigo2 with a 195 MHz R10000 processo

V. DISCUSSION

From the results shown in Tables II and III we see th
the introduction of biased moves in the simulated annea
dramatically improve the success rate of the method.
NMC column refers to the number of simulated anneal
attempts needed to solve the structure with simple Metro
lis Monte Carlo moves, whileNBMC refers to the number o
attempts required with biased moves. It is apparent tha
most cases the biased moves substantially improve the
pling, allowing one to find the correct structure in few
trials. More importantly, the technical limitations encou
tered with Metropolis Monte Carlo14 have been mostly re
moved, since most structures not solvable with simple mo
can be solved with biased moves. It must be noted that
eral of the structures shown in the tables were not know
the time Ref. 14 was published, and, arguably, some of
simpler new structures could have been solved with M
tropolis moves. Indeed, at least four groups have used
Metropolis Monte Carlo approach,14 implemented in Ce-
rius2, to solve new zeolite structures.15–20 Zeolite beta pro-
vides an example of a well known and important zeolite t
can be solved with the biased Monte Carlo, but not w
Metropolis Monte Carlo. The structures that were not solv
with simulated annealing, and only these, were attemp
with parallel tempering. All were solved. From the succe
of this approach, it is clear that parallel tempering is a mu
more powerful method than simulated annealing. We beli
that parallel tempering is a much better method precis
because it samples the correct equilibrium distribution.

The most complex of the publicly known zeolites
ZSM-5. The framework structure type is MFI, and it
shown in Fig. 1. This structure is the most complex beca
it has the highest number of unique T-atoms,nunique512. We
were able to solve this structure in one day’s work that
cluded the simulated annealing run, selecting the para
tempering temperatures, and performing the actual par
tempering run. The energy traces for the latter are show
Fig. 9, and one can clearly see how the correct structur
found in one of the high temperature systems and t
swapped down to the lowest temperature system. It is
clear from the trace that without the swapping, the low
temperature system would never cross the energy bar
separating the initial condition from the correct structure.
showcase the power of the method, we solved solved NU
framework code NES, in a low symmetry setting with 1
unique atoms. This proves that parallel tempering is pow
ful enough that the use of the maximal symmetry setting
not required. Although an upper limit to the practical app
cability of this method must exist, that limit is not obviou
from the results of our trial runs.
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We encountered a few types of problems when test
our method on the known zeolites. In some cases the fra
work has loops of length 3, with 3 T-atoms connected in
triangle. Clearly the bond angles in this case are far from
usual tetrahedral value, and the potentials that we define
Sec. II may be incorrect for these particular structures.
other words, the correct structure may not correspond
minimum of the geometric terms in the figure of merit.
these cases, we found that a small adjustment of the geo
ric weights,a i in Eq. ~1!, is a sufficient remedy. These cas
can be recognized by a visual inspection of the structu
produced, even with noa priori knowledge of the correc
structure. The case of open frameworks, frameworks
which not all of the T-atoms are 4-coordinated, can
treated by not penalizing 3-coordinated atoms. These fra
works are listed in Table IV.

A few structures were harder to solve because of th
merging. This is the case, for example, for MEP, PAU, a
MWW. Let us consider MWW, which hasnunique58, nsymm

524, andno572. The difficulty in this case stems from th
fact that two combinations of merged atoms give the sa
nT : ~1235 atoms1433 atoms!572 atoms and ~1234
atoms1634 atoms!572 atoms. Many more combination
give numbers close to 72. The density term,HD , of Eq. ~1!
will not distinguish between these combinations. This occ
rence can be inferred by visually inspecting the configu
tions of minimum energy generated or by tabulating t
number of merged atoms associated with each unique a
Again, no knowledge of the correct structure is needed
realize that the figure of merit has two or more deep we
separated by high barriers. The case of MWW is furth
complicated by the presence of 3-loops and the presenc
two atoms which, although not connected, are separated
just 3.6 Å. In the case of MWW only, we adjusted the p
rametersa i slightly, making aD small and reducing the
range of the interactions. This allowed us to solve the str
ture with 3 iterations of parallel tempering. Because of the
geometric irregularities, MWW was actually the most dif
cult structure for us to solve, even though it has only
unique T-atoms.

The presence of template molecules or heavy cation
the structure may cause a greater problem. In this case
HPXD term favors the presence of a nonzero scattering d
sity in the regions occupied by the nonframework spec
This makes the diffraction term ambiguous, and one can
many incorrect structures that are still feasible from the po
of view of geometry alone. The preferred solution in th
case is to calcine the structure to remove the template o
exchange the heavy cations for lighter ones. If the materia
not stable to this treatment, then the nonframework spe

TABLE IV. Frameworks not attempted.

Open With templates With heavy cations Other

-CHI CGF LOV WEI
-CLO CGS RSN
-RON DDR VNI
-WEN ZON VSV
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can be included as degrees of freedom in the figure of m
Zeolites with metal substitutions are quite common. S

eral of the structures that we solved are aluminophosph
or contain gallium, beryllium, cobalt, or zinc along wit
phosphorus. The effect of substitutions is quite drama
both on the geometry and on the diffraction. In fact, p
ferred bond lengths may change. The fact that the ato
species are different usually lowers the maximal symme
allowed, and hence increases the number of unique ato
We solved all known instances of these materials using
silicon to match the diffraction data. When possible, we u
the higher symmetry allowed by assuming that all T-ato
are identical in the structure determination. Of course
would be straightforward to simulate frameworks with d
ferent T-atoms and to include an atom exchange move in
Monte Carlo. This move, selected at random, would be
cepted with a Metropolis criterion, and would lead to stru
tures with the correct framework and the correct atomic s
cies in each position. The case of the framework W
weinebeneite, is separate since this is a beryllium phosph
and the bond lengths are quite different from regular alu
nosilicates. A simple redefinition of the geometric terms
Fig. 4 would allow us easily to solve this material. A gene
extension would be to allow for species with different coo
dination numbers as well as different T-T distance and T-T
angle potentials. This extension would broaden the rang
applicability of the method well beyond zeolites.

The issues of thermalization, autocorrelation times, a
efficiency are usually addressed in numerical simulat
studies. In our case, we are concerned with these elemen
a qualitative sense only. In fact, all that matters for the uti
of our method is that it determines the structure of an
known material in a reasonable amount of time. We ha
shown that this time is very reasonable and very small co
pared to the time it takes to synthesize a new zeolite.
time taken by this approach should be compared to the t
it takes to solve a single structure with conventional me
ods, typically measured in weeks, months, or year, or ye
Timing issues may become relevant when one is intereste
exhaustively listing all of the possible low energy geometr
for a given cell size and symmetry, without the aid of expe
mental data. Hypothetical structures of this sort could he
for example, in thedesignof new zeolite materials, when th
synthesis process is better understood.

VI. CONCLUSION

We have introduced a powerful biased Monte Carlo
proach that can determine the structure of a new zeo
material from the powder diffraction pattern and densi
both of which are easily measured in experiments. All of
publicly known zeolites were solved in a realistic test app
cation of the method. The method is rapid and automa
making it a natural tool for use within the combination
chemistry paradigm. The proposed technique can also
used to generate hypothetical zeolite structures. The num
of structures that can be generated in this way far exceed
number constructed to date by hand.47 A database of struc
tures can be built that will allow synthetic chemists to sea
for a structure that matches the x-ray powder diffraction p
it.
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tern of newly made materials. The generation capability m
also be directed, by, for example, specifying large por
low-densities, or other interesting functional properties. Su
use allows the creation of hypothetical zeolites with ne
tailored structures. These structures can then be sough
rational syntheses.48 The direct, real space approach m
also be applied to small, low quality molecular crystals49

such as those from drugs, dyes, pigments, and organic
linear optical materials, for which only powder diffractio
data are available.

Perhaps of more general interest to the simulation co
munity is the value of our work as a case study on the eff
tiveness of parallel tempering. We have shown that para
tempering, combined with biased Monte Carlo, is a power
method for molecular systems with many local minima. W
have suggested a general and simple histogram metho
determine the temperatures required in the extended
semble. By considering how the energy histograms over
we generally expect that, away from critical points, the nu
ber of required temperatures is proportional to@Emix(N)
2E0(N)#/AN, whereN is the number of degrees of free
dom,E0 is the energy at the temperature of interest, andEmix

is the energy at which the system can overcome all relev
barriers. How the number of required temperatures sc
with system size will depend entirely on howEmix scales
with N. In simple cases,Emix may scale as a correlatio
volume. In the worst case,Emix will scale asN, and so the
number of temperatures will be proportional toAN. By for-
mulating the method as a Markov process on the level o
single move, we were able to provide a general and m
efficient strategy for the choice of the individual system u
date frequencies. Based upon our experience with zeo
structure solution, we recommend use of parallel temper
whenever simulated annealing struggles on a minimiza
problem, especially if correct sampling of a low-temperatu
distribution is desired.
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