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Abstract

The Rietveld method is reputed to be intrinsically unable to consider diffuse scattering since it concentrates on the Bragg scattering. A hkl-based description of the calculated intensities can only take account of defects that can be statistically described inside one average cell ("periodical defects"). Nevertheless, fitting neutron and X-ray interference functions by a Rietveld for disordered materials (RDM) approach can lead to a high degree of agreement between observed data and those calculated from small models derived from pertinent crystalline structures (examples are fluoride glasses, glassy SiO2 or amorphous ZnCl2). Behind those attempts is the concept of a mean building unit which would characterize the glass structure. The calculations introduce disorder by simulating a high density of microstrain. Usually, the induced line-broadening is so large that it corresponds to a destruction of the inherent model periodicity at a few cells from an arbitrary origin.

On the other hand, the reverse Monte Carlo method (RMC) is supposed to be able to cope with any kind of disorder. It was applied either to amorphous (using giant cells, including thousands of atoms, and described in P1 space group), or to crystalline compounds (considering blocks of NxNxN cells with N ( 20). RMC has certainly to be improved for modelling some defects like dislocations which cannot be built by a simple random displacement of atoms.

Starting from small RDM models, then enlarged to several cells, it has been shown possible to obtain good fits by the RMC method without breaking the original RDM model connectivity.

Does combining the two methods has any interest and how to do it ? Trying to answer to those questions is the scope of this conference. The idea would be to decide of atom moves by testing random displacements instead of using the Rietveld least-squares process, while still using a mean small microstrained model. 

1. Introduction

In a few sentences, the presentation of both RMC and RDM methods (personal views) :

RMC - The Reverse Monte Carlo [1] method (RMC) is now widely used [2] for structural modelling. RMC produces glass structure models tending to the very best fit of diffraction data, almost in a systematical way. The composition and density are required, minimal/maximal interatomic distances should be known, and coordination numbers are welcome when dealing with network glasses. Model size involves at least 1000 atoms. Modelling may start from random atomic positions. In case of network glasses, the building of a model satisfying the coordination constraint requirements (for instance, a 4-connected three-dimensional network for SiO2 or ZnCl2) may become tedious and require a final by-hand intervention. The models tend to present non-requested features such as tetrahedra edge sharing, pending oxygen atoms, exception to the expected coordination.

RDM - On the other hand, the Rietveld for disordered material [3] method (RDM) needs a crystal structure as a starting mean model, so that the coordination constraints are respected ab initio. Glasses or nanocrystalline material diffraction data are fitted using microstrain effects on line broadening. Model size involves less than 25 independent atoms of which the coordinates are refined. This approach is controversial mainly because glasses are described as being implicitly periodical (though RMC uses periodical boundary as well), using space groups which can be different from the RMC usual one (P1).

How to reconcile both methods, that lead to quite different models, is the aim of the present paper. Is examined the behaviour of RDM models, enlarged to nearly one thousand atoms or more (by multiplying the cell edges), and submitted to random moves by the RMC method. Three examples are presented : glassy SiO2, ZnCl2 and NaPbM2F9 (M = Fe, V), all previously submitted to RMC [4-6] and RDM [3,7,6, respectively] modelling.

2. Methodology
Both RMC and RDM methods are based on models using periodic boundary conditions (leading thus to some sort of "three-periodic glasses"). The model for the RMC method is usually described with the P1 space group and the cell (generally a cube) is large, otherwise no acceptable fit can be expected. The model for the RDM method has generally to be much smaller in volume and can use space groups with any symmetry. Both methods will be shown in action on a 'simple' case : molten Cu at 1833 K.

RMC - The program used here is the RMCA version 3.04 adapted for MS Windows 95/98/NT (and available at http://sdpd.univ-lemans.fr/glasses/rmca/rmcaw95.html). Three files are necessary : 

cubig.dat, containing the input data :


Molten copper at 1833K (example)

0.0721


! number density

1.8



! cut offs

0.3



! maximum moves

0.1



! r spacing for calculating g(r)

.false.


! movout option

0



! number of configurations to collect

5000


! step for printing

100000 100000
! step limit, step for saving

0 1 0 0


! sets of experiments

cusq



! file containing the experimental data

1 1000


! first and last data point to be used

1.            


! constant to be subtracted from the data

1.       
     

! coefficient of each of the partial structure factors

0.01          

! standard deviation to be used

.false.       

! no renormalisation allowed

.true.        

! substract a constant from the data

0             


! the number of coordination constraints

0             


! the number of average coordination constraints

.false.       

! do not use a potential

cusq.dat, the experimental structure factor :

90   




! number of points

  


Q    S(Q)

 


0.1  0.032

 


0.2  0.032

 


0.3  0.032

 


0.4  0.032

 


0.5  0.033

 


0.6  0.033

 


0.7  0.034

 


0.8  0.035

 


0.9  0.037

 


1.0  0.040

 


1.1  0.045

 


1.2  0.050

 


1.3  0.056

 


1.4  0.060

 


1.5  0.070

 


1.6  0.080

 


1.7  0.092

 


1.8  0.104

 


1.9  0.125

 


2.0  0.146

 


2.1  0.186




etc

cubig.cfg the starting model configuration containing here 1000 atoms instead of 250 in the original RMCA test file :

 

(Version 3 format configuration file)

 

Molten copper at 1833K (example)                                                

          

0         0         0 moves generated, tried, accepted

          

0                     configurations saved

       

1000 molecules (of all types)

          

1 types of molecule

          

1 is the largest number of atoms in a molecule

          

0 Euler angles are provided

          

F (Box is not truncated octahedral)

            
Defining vectors are:

             
12.013180   0.000000   0.000000

! matrix defining half the

              
0.000000  12.013180   0.000000


! box size

              
0.000000   0.000000  12.013180

       

1000 molecules of type  1

          

1 atomic sites

              
0.000000   0.000000   0.000000

   

.9196923   .1548150  -.0943317



! atomic coordinates

  

-.3346117   .6183939  -.9237950



! reported to half

  

-.4528992   .2881331  -.7544799



! the box size

   

.5379519  -.6989901  -.7080133

  

-.9118490  -.9915042   .8107431

  

-.5156245   .5272276   .4234371

   

.6263573  -.4933300  -.6551015

   

.8152699  -.9060440  -.4479053

  

-.7255063  -.9945467   .1756687

   

.4897227   .0705695  -.3118713

  

-.0631945  -.4620032  -.3637259

   

.0542624  -.3182621  -.8498340

  

-.9211609   .5232799   .0895600

  

-.7179573   .7556443   .2359407

   

.4271245   .4311512  -.2984509

   

.9585254   .4311182  -.7975345

  

-.9864533  -.3055694   .3359582

  

-.5864899  -.1665049  -.9037373

  

-.5016937  -.5432656  -.5599139

  

-.1678917   .9722855   .9187276

   

.5893233   .8015096   .3142083

[image: image1.png]   

.4247720  -.0324373   .0469940



etc

The PC RMCA program starts by a double click on its name in the Windows Explorer, or typing 'rmca' in a DOS box opened in the directory containing rmca.exe and the data files. A window is opened. You are prompted to give the entry filename (here cubig, the test file) :

The PC version shows some minor differences with the original RMCA software : The .his (histogram) file is not created, and the timelim and timesav parameters have different significations. Instead of being the time the program should run for, in minutes, timelim is now the total number of moves generated before the program will stop. Timesav is the interval number or generated moves at which the results should be saved to the output file. Also the file containing the experimental data (cusq.dat here) is given without the .dat extension in the main data file (cubig.dat here). You may get the original manual RMCA.ps and the Fortran source code at the RMCA FTP server : ftp://www.studsvik.uu.se/pub/rmc/rmca/.

Running the test file, you should see at the end :

[image: image2.png]
[image: image3.png]In fact, you will not have exactly the same result due to the efficiency of the random number generator. Nevertheless, the Chi**2 value oscillates around 5 after 15000 accepted moves. The resulting fit of S(Q) is the following :

Some hints and tips about RMCA : The main function acting in RMCA is RAN (in Fortran language), the random number generator, used for selecting the moving atom as well as for deciding of the x,y,z moves. Why the calculation may be so fast ? Many elements needed for calculating the interference function are stored in memory, Only are recalculated those corresponding to the moving atom.

RDM - In order to apply the RDM method to glasses, one should dispose of crystalline-based starting models presenting the same composition or at least the same formulation as the material to be modelled. The disorder is statistically introduced by microstrain effects leading to line broadening on the diffraction pattern. The cell volume may be adjusted for corresponding to the measured glass density. A preliminary test consists in looking at the starting agreement between observed and calculated S(2() selecting some standard line broadening parameters (they can be easily adjusted by hand) and refining the scale factors. In case of non ideal composition, for instance modelling a NaPbFe2F9 glass starting from coordinates of KCaAl2F9, after adaptation, the best would be to refine first the F atom coordinates, expecting adjustment of Pb-F (~2.50 Å), Na-F (~2.35 Å) and Fe-F (~1.93 Å) distances replacing respectively the K-F (~2.80 Å), Ca-F (~2.40 Å) and Al-F (~1.81 Å) ones (one should try Pb/Na permutation too and also some statistical disorder). The next step, if some convergence has been obtained, is to refine all atomic coordinates. This supposes that a maximum of independent diffraction data have been collected. Testing a model with this complexity would require  the largest possible number of oscillations on diffraction data, say at least a total of 25 bumps which could correspond to 3 independent structure factors exhibiting 8 or 9 oscillations each of them. Finally, the line-broadening parameters could be refined and even the cell parameters. The process converges, or not, with agreement factors specific to the models. Which model can we use for molten Cu ? Certainly first the Cu crystal structure. If you possess the CRYSTMET database, it is readily obtained. Cubic Close Packed (CCP) = face centered cubic, Fm3m space group, a = 3.6144 A, Cu in (4a) Wyckoff position at x = 0, y = 0, z = 0. But, the liquid density corresponds to 0.0721 atom/Å3, and Cu solid at room temperature has :  V = a3 = 47.22 Å3, with 4 Cu atoms per cell : 4 / 47.22 = 0.0847. We need a cell volume of 4 / 0.0721 =55.478 Å3. Corresponding to a = 3.8139 Å. The RDM program used here is ARITVE version 2000 for MS Windows 95/98/NT. It is available on Internet at : http://sdpd.univ-lemans.fr/aritve.html. ARITVE is simply a Rietveld method program slightly modified in order to allow : 

       
- a huge limit of reflection number (60000 on each pattern) 

        
- 3 interference functions maximum fitted simultaneously 

  

- a huge limit of reflections overlapping at the same angle (20000) 

         
- a small number of parameters to be refined (max = 75) 

   

- only Gaussian peak shape 

       
- line broadening following the Caglioti law 

Two files are necessary :

cuCCP.dat containing the input data :

Molten copper at 1833K  CCP     
! title

90 1 3 1 1 1 1 1 1 1          

   
! ncycles, npat, maxs, ng, codes

Cu                                 



! title

1                                  



! kxr (1=neutron, 4=X-ray)

1 1                                



! NA, KL

0.700                              


! Wavelength

0.05 0.1 0.8 0.05                  


! damping factors

F M 3 M                            


! Space group

0.5800                             


! scattering factor

CU                                 


! title for each atom

 

1 0.0000 0.0000 0.0000 0.0400     
! ntyp, x, y, z, occup

46.7  500000. 10000. 50000.        
! scale, U, V, W

3.8139 3.8139 3.81390 90. 90. 90.  
! a, b, c, (, (, (
2                                  



! Nexcl (number of excluded zones)

0 300                              


! 2(1 2(2 (x100)

5600 15000                         


! 2(1 2(2 (x100)

1.0                                



! scale before refinement

cust.nor                           


! interference function filename

0 0 0 0                            


! refinement codes for x,y,z,occ

11                                 



! refinement code for scale

0 0 21                             


! refinement code for U, V, W

31 31 31 0 0 0                     


! refinement codes for the cell parameters

cust.nor the experimental structure factor, Same as cusq.dat from RMCA, but with constant 2( step and intensity x1000 (arbitrary scale) :

      119  0.00  0.50  ! number of points, starting angle, step (°2()    

   0.00000E+00   0.25066E+02   0.32000E+02   0.32000E+02   0.32133E+02

   0.32916E+02   0.33000E+02   0.33482E+02   0.34265E+02   0.35096E+02

   0.36661E+02   0.38839E+02   0.41976E+02   0.45887E+02   0.49797E+02

   0.54447E+02   0.58090E+02   0.63039E+02   0.70849E+02   0.78657E+02

   0.87753E+02   0.97115E+02   0.10833E+03   0.12470E+03   0.14106E+03

   0.16775E+03   0.20629E+03   0.25862E+03   0.33328E+03   0.44261E+03

   0.59032E+03   0.78304E+03   0.10290E+04   0.13667E+04   0.17254E+04

etc

[image: image4.png]   The PC ARITVE program starts by a double click on its name in the Windows Explorer, or typing 'aritve' in a DOS box opened in the directory containing aritve.exe and the data files. A window is opened. You are prompted to give the entry filename (here cuccp, the test file) :

[image: image5.png]Running the test file, you should see at the end :

[image: image6.png]The resulting fit of S(2() is the following :

The fit quality is not as good as the RMCA one. But remember the small cell size with 4 atoms inside and the fact that almost nothing was refined. Anyway, there is some degree of similitude between the observed and calculated data. Very probably, enlarging the cell and using this model as input for the RMCA program, would lead to a better agreement, keeping or not some of the crystal structure characteristics, by using constraints or not. 

Combining some aspects of both methods, is that possible ? Some directions to explore : A powder diffraction pattern from the RMC result could be calculated exactly in the same way as by the RDM method. The problem is to build a special program for the simulation of powder patterns in case of P1 space group with cell parameters of 30 Å or more. The reflection number for Q up to 25 Å-1 would be probably larger than 106. There is no serious difficulty to code a program doing that, but this was not realized in the present study (60000 reflections maximum are allowed per pattern in the present RDM ARITVE software [8], and this is already considerable).

Using the Rietveld method for glass modelling supposes that one accepts the idea that a selected crystal structure may represent a mean model for a glass, or a nanocrystalline material. The disorder is statistically introduced by microstrain effect, leading to strong line broadening on the diffraction pattern. If the mean RDM small models were physically sound, then they should be able to represent good starting configurations for RMC modelling, that would really introduce locally the disorder treated statistically in RDM modelling. It was thus decided to enlarge some previously established RDM models, so as to build starting RMC configurations to be tested. In all cases presented hereafter, some initial coordinations were constrained during the Monte Carlo process (SiO4 and ZnCl4 tetrahedra ; MF6 octahedra), so that the final RMC models were obtained from small random atom moves, keeping essentially the crystal structure features of the RDM starting models. With the RMC method, the neutron and X-ray data were simulated as F(Q) data, the total coherent scattering functions (TSF)  F(Q) = [Icoh(Q)-<f2>] / <f>2, where the <f2> and <f>2 terms are the usual mean diffusion factors, depending on Q (X-ray) or not (neutron). In order to characterize the fit quality, a reliability Rp factor was calculated as 100*(|Iobs-kIcalc|/(|Iobs| (%) (according to the definition I(Q) = F(Q)+1, k being a scale factor). The RDM final models were selected among many possibilities [3, 6, 7] as those providing the best Rp reliability factor. Testing a model by the RDM method, the data fitted become : S(2() = Icoh(2()/<f2>. Table 1 summarizes the test conditions. The Rp values obtained for the previous RDM and RMC (starting from random configurations) models and those corresponding to the present study (RMC starting from the enlarged RDM models) are compared in Table 2.
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ZnCl2 - A RMC study of glassy ZnCl2 has already been published [5]. We used the same neutron data [12] as in this previous work. Because in this early study, the model was small (324 atoms), a much larger one was built here with 1950 atoms in a cubic box with L = 39.906 Å. Strategy is quite important when using RMC, and the normal way for imposing a 4-connected three-dimensional network is first to fill randomly the box with Zn atoms, respecting a shortcut distance ; constraining a [ZnZn4] fourfold coordination by a RMC run without diffraction data ; adding the Cl atoms at the Zn-Zn midpoints (ensuring corner sharing) and finally running RMC with diffraction data. Another approach was deliberately used here, in order to verify if a good fit would be obtained also when edge sharing could occur between [ZnCl4] tetrahedra. The model was built up by filling first the box with 650 Zn atoms, at random, but respecting a 3.1 Å shortest Zn-Zn distance. Then, the chlorine atoms were added at random, with 1.9 Å and 3.0 Å respectively as shortest Zn-Cl and Cl-Cl interatomic distances. The RMCA program was then run without diffraction data, in order to increase these shortest Zn-Zn, Zn-Cl and Cl-Cl distances to 3.4, 2.05 and 3.2 Å, respectively, adding the constraint that four Cl atoms should be found in the range 2.05-2.65 Å around a Zn atom. Obtaining that all the Zn atoms form [ZnCl4] tetrahedra was quite long (several days on [image: image11.png]a Pentium-II 333MHz). Then, the RMCA program was run against the neutron diffraction data, obtaining finally an excellent agreement with Rp = 0.76 % (Table 2, figure 1). Looking  accurately to this model reveals that the systematic sharing of exactly two Zn atoms by one Cl atom is far from being realized, as shown in Table 3. One [image: image12.png]tetrahedron among 650 is isolated and clusters were built of which the biggest are 5 tetrahedra sharing each of their Cl atoms with 2 other tetrahedra (8 neighbours). One tetrahedron has even 9 other tetrahedra as next neighbours (fig. 2). A total of 37 tetrahedra share one edge and 2 tetrahedra share 2 edges. So that, the building conditions were unable to ensure the corner sharing exclusivity, if we expected it. Nevertheless, the fit is almost perfect.
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[image: image16.png]On the other hand, the ZnCl2 RDM model [7] (Rp = 2.40 %), built up from the (-ZnCl2 structure [9], corresponds to a perfect 4-connected three-dimensional network. It was expanded to 1728 atoms before to realize the RMC approach (Table 1, figure 3), obtaining finally the expected low reliability value Rp = 1.09 %. The observed and calculated interference functions are shown in fig. 4, and the structure model is represented in fig. 5.
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SiO2 - The RMC model for SiO2, as published in Nature [4], was not a perfect 4-connected 3D net (fig. 6), contrarily to the RDM model [3] based on the (-carnegieite (fig. 7), starting from the atomic coordinates given by Barth for its early description of high-cristobalite [10].
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Fitting both neutron and X-ray diffraction data by RMC based on the RDM model, extended to 1536 atoms, was straightforward with the final Rp values gathered in Table 2. Constraints for maintaining the initial connectivity scheme produced a model for glassy SiO2 with exclusively 6-membered rings, quite different from the "classic" RMC approach [4] leading to the occurence of 4-, 5-, 6-, 7-, and 8-membered rings Fig. 8 and 9 show respectively the interference functions and a projection of the final model.




NaPbM2F9 (M = Fe, V) - The best RDM model [6] was proposed to be the NaPbFe2F9 crystal structure (fig. 9) [11], disclosed during the recrystallization study inside the vitreous domain in the NaF/PbF2/FeF3 system. The crystal structure is built up from linear intercrossed chains of corner-linked [MF6] octahedra. It is worth noting that some Na/Pb disorder was suggested to be present in the crystalline phase. A NaPbFe2F9 polytype was synthesized later, and its structure was determined from single crystal data, showing a tripled cell parameter c : KCaAl2F9 disclosed together with two isotypical compounds KCaFe2F9 and KCaV2F9 [13]. The KCaAl2F9 crystal structure presented some anomalies and difficulties in refinements, which were suggested to be due to possible microtwinning and/or defaults in the stacking sequence, with parts adopting possibly the NaPbFe2F9 structure-type. Data presented here for the RMC/RDM study are two neutron patterns (for M = Fe and V) and an X-ray one. The expected isomorphous replacement between Fe3+ and V3+ is well supported by the crystal chemistry in fluorides in general. As a rule, when a Fe3+ -based fluoride exists, the isostructural equivalent V3+ material can be prepared too, with generally no more than 1% variation in cell dimension. The mean usual interatomic distances are 1.935 and 1.950 Å respectively for Fe-F and V-F atom pairs in octahedra. These considerations apply exclusively to fluoride compounds, because Fe3+ and V3+ cations may present a quite different behaviour in oxydes having a less pronounced ionic character than fluorides. The random RMC model [6] consisted in 1950 atoms in a cubic box (30.12 Å length for corresponding to the number density (o = 0.07135 as determined from the glass density). The initial positions were generated from a random filling of the box by the M atoms first, then the Na, the Pb and the F atoms successively were inserted. Positions at this filling stage were accepted if minimal predefined interatomic distances were respected. The MF6 coordination was constrained to occur with a maximum M-F distance equal to 2.15 Å. The RMC model did not presented two identical polyhedra and the [MF6] (M = Fe, V) polyhedral chains were zigzagging with trans or cis connections (fig. 10). A few rings with 3, 4, 5 or 6 [MF6] polyhedra sharing corners were built up by the Monte Carlo process and 92 of the 300 [MF6] units share at least one edge with another such unit (12 of them share 2 edges and 2 share 3 edges). 





A cluster of five [MF6] polyhedra linked by edges was found in the RMC model (fig. 11). It should be kept in mind that the RMC constraint to have MF6 polyhedra should not have necessarily led to regular octahedra. A model built up from [MF6] trigonal prisms (unknown for Fe3+ and V3+ in fluorides) could have been proposed by the RMC method as well (this is not the same for distorted tetrahedra which continue to look like tetrahedra, or possibly square plane if distances allow it). Indeed, a large majority of more or less distorted octahedra were built, but a few trigonal prisms have occurred (figure 12). A visual examination of each of the 300 [MF6] entities by a three-dimensional capable VRML (Virtual Reality Modelling Language) viewer, allowed to estimate that 20 of them were near of trigonal prisms (TP), 25 were quite irregular polyhedra (intermediate between TP and octahedra), the rest being acceptable more or less distorted octahedra (very few being really regular).





The way octahedra were linked in the RMC model was dominantly by corners. In fact among fluoride crystal structures with formulation A2M2F9, none presents any established [MF6] octahedra edge sharing. However edge sharing occurs as a fraction of the octahedra interlinks in crystallized compounds as BaZnFeF7 [14], BaCuFeF7 [15] or BaMnFeF7 [16] (with larger 3d-cation/F ratio) and also BaTiF5 [17] (with smaller ratio), it is thus admittable that edge sharing could occur in the NaPbM2F9 glasses. On another hand, the presence of [MF6] trigonal prisms in the RMC result is theoretically a nonsense regarding fluoride crystal chemistry (but who knows really glass structures ?). So that a RMC modelling based on the selected RDM model, showing exclusively corner-sharing octahedra, seemed appropriate, in order to validate it by a modelling involving a much larger atom number. The RDM model was extended to 936 atoms (Table 1), and the RMC application produced soon acceptable Rp values (Table 2). Fig. 13 and 14 show respectively the interference functions and a projection of the final model on which the linear intercrossed chains of corner-linked [MF6] octahedra are still well recognized.





3. Conclusion
It has been shown that a satisfying RDM model may constitute a starting model for a RMC simulation. The RDM best models correspond to crystal structures in which the glasses devitrify, in all three cases. Quantitative agreement with the experimental data as measured is a prerequisite for a model credibility but uniqueness is not ensured. One can think about what would happen if the three partial structure factors for SiO2 or ZnCl2 or the ten partial structure factors for NaPbM2F9 had been experimentally available. It is not possible to assert that the actual models proposed by either the RMC or the RDM methods would lead necessarily to low R factors on the lacking structure factors without any adjustment. Those three dimensional structures are simply models that are consistent with the data, constraints and external knowledge. In other words, the RDM best model is one structure in the group of possible RMC solutions. RMC tends to produce the most disordered structure if the starting configuration is random, and RDM produces the most ordered. Combining the two methods produces intermediate order, as expected. Both methods have pro and con. Testing a model by RDM is fast, but finding a model having the exact glass composition can be a problem. Obtaining convergence by RMC may be quite long when drastic constraints are imposed, however, the model size brings more credibility than for the generally small RDM models. Nevertheless, a strategy is essential for succeeding in building models consistent with external knowledge (absence of edge sharing, strict coordinations and so on). Such a strategy is not always easy to establish with the current existing RMC code, and a strategy avoiding trigonal prisms when octahedra were exclusively required was not found here. It is expected that confidence in RDM modelling will increase as a consequence of the present study, showing that a good RDM model is always an excellent RMC candidate, reconciling both methods.

Trying to go further in combining both methods could be attempted. The idea would be to decide of atom moves in the RDM method by testing random displacements instead of using the Rietveld least-squares process, while still using a mean small microstrained model.

Acknowledgments.  Drawings of RMC models were made by using GLASSVIR [18].

Note : Slides of this conference are on the Web at http://sdpd.univ-lemans.fr/egypte/conf1/
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Table 1.- Conditions for 

building the

 RMC models

                               from the RDM ones



Table 2.- Final reliabilities Rp (%).

N = neutron, X = X-ray ; M = Fe, V.



Table 3.- Repartition of neighbouring [ZnCl4] tetrahedra in the final "classic" RMC model for ZnCl2, starting from a pseudo random configuration. NT is the number of tetrahedra sharing N chlorine atoms with other tetrahedra. A perfect 4-connected 3D net would have corresponded to NT = 650 for N = 4.





Fig 1.- Fit and final model obtained by RMC from a random starting model.



Fig 2.- One tetrahedron has even 9 other tetrahedra as next neighbours.



Fig 3.- Fit and final model refined by the RDM method.



Fig 4.- RMC fit using the enlarged RDM starting model.



Fig 5.- Final RMC model started from the RDM small model enlarged to 1728 atoms.



Fig 6.- RMC fit and final model.



Fig 7.- RDM fit and final model.



Fig 7.- Observed (+++) and calculated ((() interference functions corresponding

to the RMC modelling of glassy SiO2, starting from the (-carnegieite RDM

model.The difference functions are in the lower parts.

                               a) Neutrons, Rp = 1.48 % ; b) X-ray,Rp = 2.00 %.



Fig 8.- Projection of the RMC model for glassy SiO2, starting from the �(-carnegieite RDM model. The distorted hexagonal tunnels are finger print of the starting high-cristobalite-like model.



Fig 9.- RDM fit and model for NaPbM2F9 glasses.



Fig 10.- RMC fit and model for NaPbM2F9 glasses.





Fig 12.- Samples of [MF6] polyhedra (octahedra, trigonal prisms, and intermediate polyhedra) as built by the RMC process with sixfold constraint.



Fig 11.- Strange cluster of 5 distorted octahedra linked by corners and edges built by the RMC process.



Fig 13.- Observed (+++) and calculated ((( ) interference functions corresponding to the RMC modelling of glassy NaPbM2F9 (M = Fe,V), starting from the NaPbFe2F9 RDM model.

The difference functions are in the lower parts.



a) Neutron, M = Fe and Rp = 0.81 % ;

b) Neutron, M = V and Rp = 1.22 % ;

c) X-ray, M = Fe and Rp = 1.75 %.



Fig 14.- Projection of the RMC model for NaPbM2F9 (M = Fe, V) fluoride glasses, starting from the NaPbFe2F9, RDM model. The distorted intercrossed chains of [MF6] octahedra are finger print of the starting model.







