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ABSTRACT

In the Monte Carlo raytraced FPA (fundamental parameter approach), the true slit dimensions, their distances and
other geometric features are used as input parameters to follow the beam paths inside the diffractometer. In a first
trial, this model failed in describing the profile standard SRM 660 (NIST standard reference material) as measured
using different devices and X-ray tubes. The reason could be addressed to the real emission profile of the commercial
X-ray tubes: 5%...30% of the X-rays do not originate from a proper rectangular X-ray focus. The intensity coming
from both sides of the focus was called ”tube-tails”. In a second step, the raytraced FPA has been corrected by
measuring the focus intensity distribution and including this measurement in the Monte Carlo raytracing algorithm.
Now, SRM 660 gave a main micro grain diameter (size) of 725(8) nm and a micro stress of 0.000075(4). For the
new SRM 660a a zero micro strain and 1456(20) nm size have been determined. However, the Rietveld plot of SRM
660a deviated significantly from a clean random difference curve. Additionally, a dynamic extinction/absorption
correction to the diffraction profile was introduced. Now, a micro strain of 0.000058(2) and an insignificant large
size > 2um was calculated for SRM 660a. SRM 660 did not show a dynamic effect. SRM 660 has a clear micro size
structure. SRM 660a seems to have a size value near to the macroscopic grain size.

INTRODUCTION U,V,W parameters [4]. Problems during the si-
multaneous refinement of U, V, W have been well
discussed elsewhere [1].  The XRPD geometric
conditions are more complicated. Therefore, one
needs more fundamental parameters then U, V, W.
For example, Kogan & Kupriyanov [5], as well as
Cheary & Coelho [6], [7], gave a description depend-

ing on some more realistic parameters such as

Size/micro strain estimation by profile refinement
demands for an accurate ideal peak shape model.
Traditionally, simple analytic profile functions have
been used (see e.g. [1]). However, they fail to de-
scribe the asymmetry of real XRPD lines, which
is caused by the geometry of the diffractometer.
More sophisticated methods use “learnt profiles”.
Here, the summed contributions of the wavelength
distribution and the geometric aberrations are de- e primary plus secondary axial divergence an-
termined from measured profiles at an ideal sam-
ple. These ideal profiles are represented either by
numerical fitting [2], or by Fourier coefficients [3]. o detection slit width;
This method enables the analysis of phase-specific
real structure broadening models. Only the broad-
ening caused by the diffraction process (real struc-
ture etc.) must be refined. The disadvantage is the
restriction of the 20 range by the line positions of
the standard.

e focus width;

gles;

e sample’s penetration depth;
e equatorial divergence angle.

Analogously to the problems with U, V, W, conver-
gence problems may occur while refining multiples

The so called “fundamental parameter approach”
(FPA) methods use a folding of separate wave-
length distribution functions, geometric profiles and
diffraction broadening models. A description for
the neutron diffraction leads to the well discussed

of the XRPD fundamental parameters. Cheary &
Coelho [7], for example, have only refined one pa-
rameter themselves.

But the XRPD profile description is much more
complicated. Even a dozen parameters are not



enough to describe the real ray paths. Here is an
example:

The two parameters, primary and secondary di-
vergence, are a combination of the axial focus di-
mension, several primary axial slits, the axial sam-
ple dimension, secondary axial dimensions (e.g. ax-
ial monochromator dimension), the axial detection
slit dimension, plus others. In the case of a finite
round sample, the axial divergence depends on the
equatorial divergency angle.

Therefore, the simple fundamental parameter
profiles [7] must be somewhat “refined” for a good
fit to the experimental data. Why not use a much
more complicated fundamental parameter descrip-
tion? The result can no longer be represented in
a closed expression. Half a dozen nested integrals
must be solved numerically. This requires for large
futuristic supercomputers, if refined. On the other
hand, such deeply nested integrals may be solved
by Monte Carlo integration.

PRINCIPLES OF THE FUNDAMENTAL
PARAMETER PROFILES

Basically, each line in a given diffraction pattern
may be described by a three-fold convolution

I = AxGxP (1)
where

A = spectral distribution of (2)
the characteristic K, doublet
of the X-rays

G = geometric response function  (3)
of the diffractometer

P = ideal diffraction function (4)

of the sample

In doing so, we assume that the geometric response
function does not depend on the wavelength of the
X-rays. This is valid for all conventional slit set-
ups, including those with a secondary monochro-
mator behind the detection slit. It is invalid for
primary monochromators. From the author’s ex-
perience, (1) holds for modern reflection optics. It
also holds for PSD counting devices.

The best values for A are given in Holzer et al.
[8]. They yield parametrizations of A as sums of
Lorentzians, being suggested by the theory of spec-
tral emission.

The convolution (1) demands efficient numeric
treatment by the implementing programs. In gen-
eral, convolutions are handled by (fast) Fourier
transforming any parts and re-transforming the re-
sult. This method is used by Kogan & Kupriyanov
[5], as well as by Cheary & Coelho [6], [7]. Here,
another method is used for an efficient numeric han-
dling of the threefold convolution procedure.

THE RAYTRACING METHOD FOR THE
CONSTRUCTION OF G

First Principles Raytracing

From now on, the conventional Bragg-Brentano ge-
ometry is assumed. Equivalent algorithms have
been developed for transmission (planar) and cap-
illary Debye Scherrer geometries.

Fig. 1 shows the simplest case of the geometry
description. The following parameters must be sup-
ported for an exact profile calculation:

e axial and equatorial optical focus dimension;

e position plus width of the primary equatorial
divergence slit, may depend on 20;

o take-off angle of the primary axial soller slit or
height plus position of a primary axial diver-

gence slit;

e length plus axial dimension, or diameter of
the sample (while raytracing, the penetration
depth of the sample will be neglected);

e cquatorial detection slit dimension, may de-
pend on 20

e axial dimension of detection slit, or axial di-
mension plus position of the monochromator.

Additional features may be described, for example:

e axial shift plus torsion around a radial axis of
the focus;

e secondary anti-scattering slit, may depend on

20;
o  tilt of the sample;

e secondary soller slit.
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Figure 1: The simplest geometry description as used by the raytracing algorithm, further details may be
added.
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Figure 2: Raw data (event counts per channel) Figure 3: Data from fig. 2 as normalized and fit-

for an exemplary diffractometer set-up.

The profile is raytraced at a fixed set of angles
0. For each O, a large number of random events
(counts) is computed as follows: A random start-
ing position is chosen inside the optical tube focus.
Further random numbers are:

e the equatorial position inside the equatorial di-
vergence slit;

e the axial position inside the axial divergence
slit, or the axial angle inside the primary soller
slit. In the event that the ray path does not
reach the sample area, the event will be marked
as “failed”;

e the equatorial position in the detection slit.
In the event of the ray being screened by the
anti-scattering slit, the event will be marked as

“failed”;

e the axial position inside the detection slit, or
on the monochromator;

e or the axial angle in the secondary soller slit.
In this case, the ray may axially fail the detec-
tion slit, or the monochromator and is there-
fore marked.

For each event, the real Bragg angle O, which will
occur between the real primary and the secondary
ray path at the specimen’s surface, is computed.

This gives a difference A® = 0 — 0. The range

of possible A® values is covered by a narrow grid

ted by a sum of 10 squared Lorentzians.

(equivalent to the behavior of a multi-channel ana-
lyzer as known from PSDs). After having reached
a given number of events in the maximum channel,
this random process is stopped. As a result, we
have a representation of the geometric profile as a
collection of noisy points, see fig. 2.

An equivalent method is used in the fields of
multimedia while constructing “imaginary worlds”
and the rendering programs there are called “ray-
tracing programs”. Following this equivalence, we
call the method “raytracing fundamental parameter
profiles”.

For purposes of further numeric handling (that
means folding procedures with A and G), this data
set must be converted into a suitable representa-
tion. The traditional way is a Fourier representa-
tion. Here, another representation is chosen: The
noisy points are fitted by a growing number of
squared Lorentzian functions, until a given preci-
sion is reached. This method has two advantages:

1. A as given in [8] is parametrized as sums of
Lorentzians. P may be described by sums of
Lorentzians (for simplification), this gives an
effective and low-parametric representation of
the sample’s diffraction function. FEach finite
sum of Lorentzians folds simply by each other
finite sum of Lorentzians. The result is a finite
sum of Lorentzians, too.

2. Fitting the noisy point-by-point representation
of G by squared Lorentzians is an effective way
of smoothing this curve.



For example, Fig. 3 gives the representation of the
random points as a sum of squared Lorentzians.

Doing so gives a set of geometric profiles at finite
angles (say, a dozen angles ©p). Following this,
these geometric lines are interpolated for each angle
by computing weighted sums of the neighbouring
lines. While doing so, the interpolated lines may
be corrected for the sample’s penetration depth and
the finite sample thickness. The weighted sums are
fitted by sums of squared Lorentzians, again.

This two-step algorithm was chosen due to the
computing time. Step 1 (raytracing) needs half an
hour for a dozen angles, step 2 needs five minutes for
hundreds of angles. Carrying step one for hundreds
of angles would take a whole day to compute.

Trying these First Principles
Raytraced Profiles

This raytracing algorithm was checked while mea-
suring the remaining size/strain values of LaBg
(NIST reference material SRM 660). For the
size/strain model, see [9]. We have used two dif-
ferent diffractometers with different slit set-ups, see
table 1.

To be sure, three different X-ray tubes from dif-
ferent manufacturers were used: Siemens (the old
glass type, manufactured at the Rudolstadt fac-
tory), AEG and Philips. As one may observe from
the upper half of table 2, the results do not lie
within their tolerances. The raytraced fundamental
parameter profiles have to be further improved.

Improving Raytracing by
Tube Tails Correction

Obviously, the differences occur while changing the
X-ray tubes. For a deeper insight, the focus of the
X-ray tube was examined as follows: A lead foil
with a small hole (< 50pm) was placed on the axis
of the diffractometer. Some damping material was
additionally placed into the X-ray path. We used a
very narrow detection slit of 50pm. So we measured
an intensity distribution as shown in fig. 4.

Obviously, a relevant part (5%...30%) of the
X-rays is not produced from a proper rectangular
line focus shape, but from supplementary tails on
both sides of the optical focus. This effect depends
on the type, the manufacturer, the voltage/current
and the life stage of the tube and was called “Tube
Tails”.
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Figure 4: Intensity distribution around the focus as
measured for an older AEG fine focus tube. A lead
foil with a hole less than 50um hole was placed at
the sample position and was used for the reproduc-
tion of the tube focus onto the receiving slit.

20 20
15+ 15+
10+ 10+
5+ 5+
O T T T O T T T
03 02 01 0 01 02 -03 02 01 0 01 02
Delta 2 Theta Delta 2 Theta
Figure 5:  Raytraced geometric part G at

20=50 deg according to the XRD30001l" set-up
given in table 1. Left: without tube tails correc-
tion, right: with tube tails correction.
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Figure 6: Rietveld plots for the (100) line of the
SRM 660 standard. Left: without tube tails cor-
rection (R,,=16.02%), right: with tube tails cor-
rection (R.,,=12.55%). Resp was 10.51%.



Table 1: Exemplary geometric set-ups (complete inputs in the raytracing algorithm).

(lamellar distance/length)

Goniometer type XRD30o00T'T URD6
goniometer circle radius 250mm 220mm
optical focus dimensions:

axial 12mm plus 1mm shift 12mm
equatorial 0.04mm 0.04mm
primary Soller slits 0.5/25 0.5/20

axial slit

8mm at radius 128 mm
(for diminishing the influence —
of the axial focus shift)

equatorial divergence slit

1.5mm at radius 98mm, or
variable slit, irradiated
sample length 10mm

1lmm at radius 119mm

sample dimensions

25x25mm- (quadratic
q

25mm diameter (round)

receiving slit:

(terminates ray paths axially)

equatorial dimension 0.2mm 0.25mm
(does not terminate ray paths axially)

secondary monochromator:

distance behind receiving slit 52mm 59mm
axial dimension 15mm 15mm

The simulation of the tube tails was introduced
into the raytracing algorithm. Corresponding to
a measurement as given in figure 4, a determined
part of the random ray paths originates outside the
proper rectangular line focus. Fig. 5 compares both,
the raytraced geometric parts G with and without
tube tails correction.

Table 2 illustrates the success of the tube tails
correction. Tube tails are the strongest fault of
classical fundamental parameter profile description.
The measurements clearly show the imperfectness
of line profile standards. The total error of the ap-
proach is much less compared to line standard im-
perfectness.

The Rietveld plots, as well as the R,,, values, also
demonstrate the success of the tube tails correction
(see figure 6).

Reference Material NIST SRM
660a

In September 2000, the new NIST peak position
and peak profile reference material SRM 660a be-
It was certified for homogeneity
and lattice parameter [10]. Efforts were under-
taken to achieve a minimum line broadening due to

came available.

size/strain and optimum grain statistics. A domain
size of 2.0 pm and a microstrain below detection

limit were given as non-certified values. Electron-
microscopic crystallite sizes were observed from 2 to
5 pm [10]. Due to the applied sieving procedure, the
aggregated grains were restricted in size to 15 pm.
This was confirmed by LASER diffraction. There-
fore (and due to the excellent purity), the reference
material SRM 660a is expected to be suitable for
profile extraction. The following questions have to
be answered:

e Is a more detailed real structure character-
isation possible? In particular, where does
the contradiction between observed X-ray and
LASER beam size values come from?

e Does the grain statistic of SRM 660a enable the
extraction of the device profiles from narrow
lines (multilayer-mirrors etc.)?

Characterisation of SRM 660a

The data was acquired using an XRD 3000 T'T
diffractometer (Seifert, Ahrensburg). The goniome-
ter radius was 250 mm. The diffractometer was
equipped with a Cu long fine focus tube and a sec-
ondary graphite monochromator. A detection slit
width of 0.2 mm was chosen and primary soller
slits and a fixed divergence slit were used. 11001
data points were collected from 15 to 125 deg 20



Table 2: Comparison of size/strain values of SRM 660 as obtained using three different tube types and
deconvoluted, with and without tube tails correction

Diffractometer XRD 3000 XRD 3000 XRD 3000 URDG6

Tube manufacturer AEG Rudolstadt Rudolstadt  Philips

Tube anode Cu Cu Cu Co

Equatorial divergence slit fixed fixed variable fixed

without tube tails correction

size/nm 308(4) 468(6) 474(5) 610(10)

micro strain x10° 0 0 0 0
with tube tails correction

size/nm 884(31) 793(23) 824(21) 944(34)

micro strain x10° 115(8) 105(8) 113(6) 96(10)
Cheary & Coelho (1998)

size: ‘ 1.3(7)pm

at a step size of 1/100 deg and a constant measur-
ing time of 10 s per step. Refinement was carried
out using the Rietveld program BGMN. lts funda-
mental parameters profiles were corrected for the
measured tube tails. A mean crystallite size of
1.456(20) pm and no micro strain were obtained.
This corresponds to the results given in [10].

However, the SEM observations [10] and the
preparation proccess by grinding and annealing of
a hard and brittle material indicate a domain size
close to the grain size, as well as some minor micro
strain due to surface tension. A more sophisticated
profile model may consider the dynamic effect of ex-
tinction [11], [12]. The latter is not described by the
geometric (kinematic) theory of diffraction, which
is commonly used in the fields of powder diffrac-
tion. Therefore, a very simple extinction correction
to the line width was introduced.

Extinction corrected line profiles

The extinction length Ay [11] is commonly used
for the discussion of dynamic effects. For LaBg
(SRM 660a), it is in the order of 1 pm. Follow-
ing the SEM results [10], one must use the dy-
namic scattering theory. Additionally, LaBg is an
highly absorbing specimen. In contrastiction to Si-
powder (where one may use the simple dynamic the-
ory without absorption), one must use the dynamic
theory for absorbing specimens.

Due to the high absorption, the Bragg case (re-
flection) is used. Transmission will occur with sig-
nificantly reduced intensity. We start using the
ideal Darwin case (non-zero, but negligible absorp-

tion). In order to use the results in the BGMN
Rietveld program, the complicated diffraction pat-
terns [12] are approximated by a Lorentzian func-
tion of equal total intensity and equal asymptotic
behaviour for large angular misfits |y| (equal long-
range peak tails). In an angular scale, as used in the
dynamic diffraction theory, the Lorentzian width
parameter by results as

3

by = 3—25 (5)
3 A
- e ©)
S e )
32 sin20Q 7V
with
o2
R = e (8)
one electron diffraction strength
A X-ray wavelength
Fy, . structure factor of the
observed reflection
Iy structure factor of its inverse
Th
vl = % (9)
Yo = cos (7€) (10)
v = cos (7€) (11)
C' . dynamic polarization factor.

€o and €}, are the directions of the primary and the
diffracted beam respectively.
crystal surface. Due to the non-planar grain size,
V/]v] must be discussed in detail later.

77 is normal to the



Now the absorption is introduced. Following [12],
absorption mainly influences the central part (max-
ima) of the diffraction patterns. The asymptotic
behaviour for |y| — oo remains unchanged. [12]
uses the value

oy
, L E (12)
Clen VI
" 1
0 /
20 |41 ( VIl
(y < 0in the Bragg case)
with
A
A _% absorption (14)
s
RA*F),
w;h = — Y . (15)

Numerical trials (numerical integration of the angu-
lar dependencies as given by Zachariasen [12]) gives

el —

w gl e

(16)

Iintegral ~
as an approximation for the integrated intensity be-
haviour for all values |¢g| = 0...00. The relative
error is about 1%. As a result, the width of the
Lorentzian approximation must be enlarged by the
reciprocal of this value.

Now we introduce the diffraction length scale as
used by BGMN and in size/micro strain estimation.

As a result, we obtain the total width parameter by
for an approximated Lorentzian

37 2 cos® )\ZRC\/F;LF;L

b namic — 4o A
1,dynami 32 7] A sin20 7V
7 |g| el
el — 1 (17)
_ 3_71' | |)\RC\/FhF;L
32 7 sin® 7V
 lgl !
=P (18)

poV 1
= ———— [+ —=] (19
for purely dynamic diffraction.
Following the purely geometric scattering theory,
spheric grains with mean diameter d (for distribu-
tion see [9]) gives a Lorentzian width parameter

4
bl,geometric = 37(2 (20)

in the diffraction length scale [9].

However, the diffraction of SRM 660a follows nei-
ther a purely dynamic nor a purely geometric the-
ory. According to the discussion of absorption, a
total Lorentzian width parameter

bl dynamic
By = s (21)
b namic
tanh (bll,ygde};metric)
is assumed using the intensity reduction formula
for the thin Bragg case [12]. By following [12], this

gives

bl,dynamic > 1 8

by ,geometric

bl,dynamic < 0 4

by ,geometric

bl ,dynamic for

By =
! { bl ,geometric for
(22)

The factor /|y| must now be discussed for the
powder diffraction case. In particular, it diverges if
7o becomes zero (grazing incidence onto grain sur-
face). The mean influence of this yet unknown value
is introduced as a free parameter yyean as follows:

il = V- (23)

For reasons of symmetry, equally statistical distri-
bution is assumed for |yo| and |y;]. Subsequently,
—L_ s distributed equally to \/[v]. It follows that

Vil
\/m+ \/%—| = 2\/’)/mean y (24)

as used in (19).

Extinction corrected

size/micro strain values

This correction reduces R, from 7.90% to 7.64%.
The Durbin-Watson value increases from 1.40 to
1.48 (see Tab. 3 and Fig. 7). \/Vmean refines to
2.72(3). The size value becomes insignificantly
large. Following (22), this means

V/ Vmean 3_77 )\RC\/F}LFB

bl ,geometric <

1.8 32 sin®O#V
gl !
’ 67T|g| _1 ) (25)

which means b geometric < 0.2/pm or d > 2pm
for a typical LaBg-reflection. In accordance with
the expectations made above, a micro strain of
0.00583(19)% was calculated. A re-measurement
and re-evaluation of the older reference material



Table 3: Results of the size/strain analysis of SRM
660a.

extinction correction no yes
Rup 7.90% 7.64%
Durbin-Watson 1.40 1.48
size/pm 1.456(20) >2
micro strain 0 0.00583(19)%
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0 0
-500
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Figure 7: Rietveld difference plots for the 100 lines
of SRM 660a. Left without, right with extinction
correction.

SRM 660 under equivalent conditions yields the
value 0.00890(40)%. As a difference, SRM 660 scat-
ters purely geometricly at a size value of 701(13)
nm and no dynamic effect was detectable (y/7mean
refines to zero).

CONCLUSION

Raytraced fundamental parameter profiles improve
the accuracy of laboratory XRPD size/micro strain
estimations. Programs for the construction of these
profiles and a Rietveld program for using them were
developed. Using these programs, one can obtain
more precise size/micro strain values without the
need for more precise measurements, or for smaller
slits etc. (resulting in higher natural resolution, but
otherwise in less intensity plus worse grain statis-
tics). In addition to this, one may make decisions
about the truth/falseness of model assumptions,
which were impossible using traditional techniques.
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