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The charge ¯ipping algorithm proposed by OszlaÂnyi & SuÈ to�� [Acta Cryst. (2004),

A60, 134±141] for ab initio reconstruction of crystal structures is generalized

towards superspace. Its ef®ciency is demonstrated by successful reconstruction

of eight known incommensurately modulated structures from experimental

data. The output of the charge ¯ipping algorithm is an electron density with

symmetry P1. The symmetry of the structure is recovered by locating the

positions of symmetry operators and averaging the density over the symmetry-

related pixels. The reconstruction of a modulated structure by the charge

¯ipping algorithm and the accuracy of the result is demonstrated in detail on

the modulated structure of tetraphenylphosphonium hexabromotellurate(IV)

bis{dibromoselenate(I)}.

1. Introduction

Ab initio structure solution of ordinary periodic crystals from

single-crystal X-ray diffraction data has become a routine job

during the last few decades, mainly due to the development

and continuous improvement of direct methods. Contem-

porary advanced techniques allow one to solve structures with

more than a thousand atoms in the asymmetric unit of the

structure. This contrasts with the situation in the crystal-

lography of incommensurately modulated crystals. Their

structures are usually solved by embedding in superspace (de

Wolff et al., 1981; Janssen et al., 1992; van Smaalen, 1995). In

this technique, a structure with d modulation vectors is

described in a �3 � d�-dimensional [�3 � d�D] superspace and

its atoms are represented by d-dimensional domains that are

continuous along the additional dimensions. For this reason,

the methods used for periodic crystals and in particular direct

methods cannot be simply generalized to allow for a structure

solution directly in superspace because the discrete nature of

the atoms (their `atomicity') is a key property used by most of

the ab initio structure-determination methods.

The structure solution of a modulated structure is usually

done in two steps. In the ®rst step, the average structure is

determined, which can be understood as the three-dimen-

sional periodic structure with atoms at the positions obtained

by averaging all their positions in the modulated structure.

Once the average structure is known, the modulation can

often be determined by re®nement with arbitrary small

starting values of the modulation parameters. If this approach

fails, another method can be applied, which uses the known

phases of the main re¯ections and a modi®ed Sayre's equation

to determine the phases of the satellite re¯ections (Hao et al.,

1987; Fan et al., 1993). In this method, the phases of the main

re¯ections are determined ®rst by conventional direct

methods, and the phases of the satellite re¯ections are esti-

mated from a modi®ed Sayre's equation with the assumption

that the phases of the main re¯ections are known. Alter-

natively, Patterson methods in superspace can be used to

estimate the modulation phase and amplitude of heavy atoms

(Steurer, 1987).

The common feature of all contemporary methods for

structure solution of incommensurately modulated crystals is

the necessity to determine the average structure. However, in

some cases this can be a very dif®cult task. Complex organic

molecular compounds have been discovered that exhibit large

modulations with amplitudes exceeding 1 AÊ (Gaillard et al.,

1998; Pinheiro et al., 2004; SchoÈ nleber & Chapuis, 2004). With

such a huge modulation, the determination of the average

structure can be extremely dif®cult and the structure must be

solved in an approximate supercell to obtain an initial struc-

ture model. This can be a non-trivial task if the nearest

suitable supercell is too large.

This paper presents a method for ab initio solution of

modulated structures from X-ray diffraction data directly in

superspace, without the intermediate step of determining the

average structure. It is a generalization of the method dubbed

charge ¯ipping, which was presented recently by OszlaÂnyi &

SuÈ to�� (2004). This method was successfully tested with periodic

molecular structures having more than 200 non-H atoms in the

unit cell. The method does not make use of the point-like

character of the atoms (`atomicity') of the underlying struc-

ture. Instead it uses the property of the crystal structures that

most of the volume is ®lled by very low electron density and

high-density regions ®ll only a very small part of the space.

This property is common to both ordinary and superspace

electron densities, making the charge ¯ipping algorithm an
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ideal tool for ab initio structure determination of electron

densities of modulated structures.

In the ®rst part of the paper, the algorithm is brie¯y

described and generalized towards superspace. In the next

section, the determination of the origin of the symmetry in

the reconstructed densities is discussed. xx4 and 5 present

examples of structures solved by charge ¯ipping in superspace

and the presented method is illustrated with the solution

of the modulated structure of tetraphenylphosphonium

hexabromotellurate(IV) bis{dibromoselenate(I)}.

This paper deals exclusively with the class of incommen-

surately modulated structures, including composite structures.

It does not consider quasicrystals, which can be described in

superspace too, but the method is different (Janot, 1995).

However, it is very likely that charge ¯ipping in superspace

can be applied to the structure solution of quasicrystals too.

Another algorithm based on the modi®cation of superspace

density has already been applied to quasicrystals by Takakura

et al. (2001).

2. The algorithm

The algorithm is discussed in detail in the paper by OszlaÂnyi &

SuÈ to�� (2004) together with its mathematical aspects. The

description and analysis of the algorithm given there applies

almost completely also to charge ¯ipping in superspace.

Therefore only a basic description of the algorithm will be

given here. The algorithm is described in the original version

for periodic structures and then it is generalized to modulated

structures.

The electron density � is sampled on a grid with

Npix � N1 � N2 � N3 pixels. The density values �i are evalu-

ated in each pixel i � 1; . . . ;Npix of the grid. jFobs�H�j are the

experimental amplitudes of the structure factors. The algor-

ithm is initiated in the zeroth cycle by assigning random

starting phases 'rand�H� to all experimental amplitudes and

making all unobserved amplitudes equal to zero:

F�0��H� � jFobs�H�j exp �i'rand�H�� if jFobs�H�j is known

0 otherwise.

�

�1�
The iteration cycle then proceeds as follows:

1. The density ��n� is calculated by inverse Fourier transform

of F�n�.
2. The modi®ed density g�n� is obtained by ¯ipping the

density of all pixels with density values below a certain posi-

tive threshold � and keeping the rest of the pixels unchanged:

g
�n�
i � ��n�

i if ��n�
i > �

ÿ��n�
i if ��n�

i � �.

�
�2�

3. Temporary structure factors G�n��H� �
jG�n��H�j exp �i'G�H�� are calculated by Fourier transform

of g�n�.
4. New structure factors F�n�1� are obtained by combining

the experimental amplitudes with the phases 'G and setting all

non-measured structure factors to zero:

F�n�1��H� � jFobs�H�j exp �i'G�H�� if jFobs�H�j is known

0 otherwise.

�

�3�
These structure factors then enter the next cycle of iteration.

The F�0� structure factor needs special treatment. In the

original version of the algorithm presented by OszlaÂnyi & SuÈ to��
(2004), the F�0� structure factor is set to zero in the zeroth

cycle of the iteration and allowed to change freely in the

subsequent cycles. In this work, a different method of handling

the F�0� value has been adopted. F�0� is set to zero not only at

the beginning of the iteration but also at the beginning of each

cycle, before the density ��n� is calculated from F�n��H�. This

modi®cation made it possible to use lower values of �, which in

turn produced considerably clearer density maps with lower

noise level. The interval of acceptable values of � was broader

and the speed of convergence was comparable to or better

than the convergence of the original version. However, thor-

ough tests are necessary to assess the applicability of the

modi®ed version of the algorithm to large 3D structures.

Preliminary results indicate that this modi®cation performs

worse than the original version in the case of very complex

structures (OszlaÂnyi, private communication).

� is the only adjustable parameter of the algorithm. Its value

should be selected small relative to the maximum density, but

larger than the typical amplitude of the Fourier artifacts

induced by the series-termination error. In practice, the value

of � is determined by trial and error.

An important aspect of the algorithm is that all operations

are performed in the whole unit cell with symmetry P1. The

origin of the structure is thus not ®xed and the structure can

emerge anywhere in the unit cell. If the electron density is

forced to obey the symmetry in each cycle, the convergence is

much slower and the results are considerably worse. It will be

shown in the next section that the symmetry of the electron

density can be recovered by locating the symmetry elements in

the output of the charge ¯ipping algorithm instead of forcing

the symmetry to be obeyed during the iteration.

The progress of the iteration can be monitored for example

by observing the R value of amplitudes jG�n��H�j with respect

to jFobs�H�j. It is large in the initial cycles of the iteration and

the onset of the convergence is signalled by a sharp decrease

of the R value. The iteration is converged if the R value stops

decreasing and oscillates around a constant value. The ®nal R

values are larger than the values typical for successful struc-

ture re®nement, typically 20±30%. However, the R value is not

used as a measure of the quality of the reconstruction, but

merely as an indicator of convergence. For more information

see OszlaÂnyi & SuÈ to�� (2004).

The generalization of the algorithm for reconstructions of

incommensurately modulated and composite crystal struc-

tures is straightforward. Following the method of embedding

of aperiodic crystal structures in superspace (de Wolff et al.,

1981; Janssen et al., 1992; van Smaalen, 1995), the 3D density is

replaced by a �3 � d�D superspace density sampled using a

�3 � d�D grid with Npix � N1 � N2 � . . . � N3�d pixels, where

d is the number of independent modulation vectors. The
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structure factors are indexed by �3 � d� integer indices. They

represent the coef®cients of the Fourier transform of the

superspace density. With these modi®cations, the algorithm

described at the beginning of this section can be applied

directly to incommensurate structures. The analysis of the

output superspace density yields positions of the atoms and

their modulation functions (x5).

The algorithm described in this and next sections was

implemented in a computer program BayMEM, whose main

purpose is the reconstruction of the electron densities by the

maximum-entropy method in arbitrary dimensions (van

Smaalen et al., 2003). BayMEM was used for all tests

presented in this work.1

3. Reconstruction of the symmetry

The output of the charge ¯ipping algorithm is a density with

symmetry P1. However, the symmetry of the structure is

present in the density with good accuracy and it is desirable to

locate the symmetry elements and to shift the origin of the

density to the origin of the (super)space group. If the positions

of the symmetry elements are located, then averaging over

symmetry-related pixels of the unit cell is possible reducing

the random noise present in the density and enhancing the

signi®cant features of the density.

The positions of the symmetry elements can be located by a

method proposed by Hendrixson & Jacobson (1997) for

locating symmetry elements in Patterson superposition maps.

Every symmetry element Ŝ is characterized by its rotational

component R and translational component s. If the symmetry

element is shifted from its position by an additional vector t,

then the operation of such an operator on a point r is given by

fŜ; tgr � Rr� �Iÿ R� � t� s; �4�
where I is the identity matrix. The proper value of t must be

found in order to locate the position of the symmetry element.

If a symmetry element with incorrect t operates on the ideal

symmetric density, it will produce an identical image of the

density, which is however shifted with respect to the original

density. Only if the shift vector t is correct will both densities

be identical. The coincidence of the original density ��r� and

the density ��fŜ; tgr� obtained by applying the symmetry

operator Ŝ with shift t can be quanti®ed by evaluating the

product function Q�Ŝ; t� [equation (5) in Hendrixson &

Jacobson (1997)]:

Q�Ŝ; t� � R
Vcell

��r���fŜ; tgr� dr: �5�

This function has a maximum for the correct shift vector t. It

can be evaluated in direct space, where it transforms into a

summation over all pixels in the discrete density, or in re-

ciprocal space using the structure factors calculated from the

electron density [equations (8) and (10) in Hendrixson &

Jacobson (1997)].

The components of the vector t of a particular symmetry

operator are arbitrary in all lines of the matrix �Iÿ R�, which

contain only zeros. The origin shift along the coordinates

corresponding to those lines cannot be determined from that

operator. Thus, the shift of origin of the density must be

sometimes determined from several symmetry operators, each

of which allows determination of different components of the

origin shift.

In principle, this method of locating symmetry could be

used to check for the presence or absence of symmetry

operators in the structure. This could help in distinguishing

(super)space-group symmetries that cannot be uniquely

determined solely from the symmetry and systematic extinc-

tions in the diffraction pattern (the space groups with the same

diffraction symmetry). However, tests on various 3D and 4D

structures have shown that the symmetry elements can be

located, but the agreement is not quantitative. In other words,

the function Q�Ŝ; t� [equation (5)] has a maximum for the best

shift t, but the height of the maximum can vary strongly for

different symmetry operators in the same structure. Thus, no

hard limit can be set to decide whether a particular symmetry

operator is present or absent and the inferences about the

symmetry based upon the results of the charge ¯ipping

algorithm must be made with great care. The behavior of the

symmetry in the results of the charge ¯ipping algorithm will be

a topic of future research.

4. Applications

The algorithm was tested with several modulated structures,

ranging from a simple displacively modulated structure of

ammonium tetra¯uoroberyllate and composite structure of

(LaS)1.14NbS2 to complex strongly modulated organic

compounds. An overview of all tested structures is given in

Table 1. All structures were successfully reconstructed by

charge ¯ipping in superspace except for the structure of

quininium (R)-mandelate. This exception will be discussed

separately at the end of this section. In the successfully solved

structures, all non-H atoms of the average structure could be

located.

The tests were performed with experimental data. The tests

with simulated data (noiseless structure factors computed

from the structure model) provided results very similar to the

experimental data and the latter are therefore used

throughout this paper to emphasize the immediate applic-

ability of the method to real problems.

OszlaÂnyi & SuÈ to�� (2004) point out the necessity of correction

for the overall isotropic thermal parameter B. In the examples

presented here, no such correction was necessary. The struc-

tures could be reconstructed from uncorrected data and the

correction has only a little impact on the speed of convergence

and quality of reconstructions. This is actually an expected

result, since the values of B in the tested structures are rela-

tively small ± about 4.5 AÊ 2 or less.

The only free parameter of the algorithm is the parameter �.

Its proper value can usually be found very quickly by trial and

error. For amplitudes scaled to the absolute scale, the values
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1 This program is available free of charge for non-commercial use. Requests
for copies of the software should be addressed to Professor Sander van
Smaalen, University of Bayreuth, Germany, e-mail: smash@uni-bayreuth.de.
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� � 0:1 ÿ 1:0 were applied for the structures listed in Table 1.

The exact value of � was not critical and it only marginally

in¯uenced the speed of convergence, ®nal R value and the

amount of noise in the resulting density.

The iteration started to converge almost immediately, after

®ve or ten cycles in all cases. The R value decreased steadily

until it reached the level of convergence (Table 1), where it

oscillated typically within 0.5%.

For practical purposes, it is advisable to include only

re¯ections with observed intensities in the input data set

(usually I> 3�). Omitting the weak re¯ections reduces the

computation time and the overall amount of noise in the

resulting density. No negative in¯uence on the performance of

the algorithm could be observed. The results presented in

Table 1 and in the following section were obtained with only

observed re¯ections in the data sets. This also led to signi®-

cantly lower R values in all test cases, contrary to the pre-

liminary results mentioned in OszlaÂnyi & SuÈ to�� (2004).

The only structure that could not be solved by the charge

¯ipping algorithm is quininium (R)-mandelate [SchoÈ nleber &

Chapuis (2004), see Table 1]. The volume of the primitive

basic unit cell is the second largest among the tested structures

and the number of atoms in the primitive cell is the largest of

all tested structures. These facts and the large number of H

atoms make this structure probably the most complex among

the structures listed in Table 1. In order to ®nd the reason for

the failure of the algorithm, a number of simulated data sets

were generated using the published structure model. In

addition to the unmodi®ed simulated data with experimental

resolution, data sets were calculated with the resolution

increased from the experimental �sin �=��max = 0.5 to

�sin �=��max = 0.7 AÊ ÿ1. A data set with maximal index of

satellites limited from 4 to 2 was also created as well as one

data set generated from a structure model with zero dis-

placement parameters. None of the calculations on these

modi®ed data sets have led to reconstruction of the structure,

despite several dozens of runs with different random starting

phases. The behavior of all runs was quite similar. The R value

started decreasing after a few cycles but the decrease stopped

at about 45% and oscillated at this value. The dominating

feature of the density at this stage was one large positive peak.

The rest of the density was ®lled with many smaller randomly

scattered peaks without any relationship to the true structure.

The presence of the large positive peak might be an expla-

nation for the failure of the algorithm. The density in the peak

is larger than �, it thus cannot be eliminated by ¯ipping of

charge. As the peak is structured and large enough to ®x the

phases of many re¯ections, the iteration converges to a false

stable con®guration of phases. However, the reason for the

repeated occurrence of the large positive peak in all recon-

structions of many different data sets still remains to be

clari®ed. Understanding this feature might shed more light on

the basic properties of the algorithm.

5. Example of structure solution using charge flipping in
superspace

The process of structure solution with charge ¯ipping in

superspace and the analysis of the resulting density will be

demonstrated with the structure of tetraphenylphosphonium

hexabromotellurate(IV) bis{dibromoselenate(I)} (see Table

1). This structure contains heavy atoms (Te, Se, Br) in

combination with very light atoms (C). Large positional and

occupational (crenel-like) modulations occur in the structure,

making it an ideal example for testing the quality of the

reconstruction by the charge ¯ipping algorithm. The structure

was solved and published by Janickis et al. (2002). The lattice

parameters are a � 11:261, b � 24:543, c � 10:814 AÊ ,

� � 102:84�, modulation vector q � 0:736a� � 0:545c�. The

data set comprises 4247 observed re¯ections (main re¯ections

+ ®rst-order satellites) with maximum resolution

�sin �=��max � 0:67 AÊ ÿ1.

As a ®rst and crucial step, the density map in four dimen-

sions was determined by the charge ¯ipping algorithm on a

grid 48 � 128 � 48 � 16 points, which corresponds approxi-

mately to a pixel size of 0.2 AÊ in all real-space dimensions. The

resulting map with symmetry P1 was analyzed for positions of

symmetry elements (x3). The origin of the density was shifted

to the position of the inversion center of the superspace group

C2=m��0
�0s and the density was averaged over symmetri-

cally equivalent pixels.
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Table 1
Basic characteristics of structures tested with charge ¯ipping in superspace.

The number of atoms corresponds to the primitive cell. R denotes the converged R value of the iteration of charge ¯ipping.

Structure [ref.] Symmetry Composition Cell volume (AÊ 3) Atoms R (%)

Ammonium tetra¯uoroberyllate [1] Pnma��00�0ss (NH4)2BeF4 462.35 28 19
Tantalum germanium telluride [2] Pnma�00
�s00 TaGe0.354Te2 347.3 16 32
Lanthanum niobium sul®de² [3] F 0m2m��00�00s (LaS)1.14NbS2 439.9 5.32 19
4,40-Azoxyphenetole [4] I2��0
�0 C16H18N2O3 1457.0 42 32
Quininium (R)-mandelate [5] P21��0
�0 C20H25N2O2

+ �C8H7O3
ÿ 1214.6 70 ±

Tetraphenylphosphonium hexabromotellurate(IV)
bis{dibromoselenate(I)} [6]

C2=m��0
�0s [(C6H5)4P]2 [TeBr6(Se2Br2)2] 2913.9 130 32

Hexamethylenetetramine sebacate [7] P21��0
�0 N4(CH2)6 � (CH2)8(COOH)2 942.05 48 31
Hexamethylenetetramine resorcinol [8] I 0mcm�0�0�s0s N4(CH2)6 �C6H4(OH)2 1232.47 32 30

References: [1] Palatinus et al. (2004); [2] Boucher et al. (1996); [3] Jobst & van Smaalen (2002); [4] Pinheiro et al. (2004); [5] SchoÈ nleber & Chapuis (2004); [6] Janickis et al. (2002); [7]
Gaillard et al. (1998); [8] Rodriguez & Chapuis (2004). ² The unit-cell volume and the number of atoms of this composite crystal structure are related to the ®rst (NbS2) subsystem.
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The averaged density was then analyzed by the program

EDMA for analysis of discrete electron densities in arbitrary

dimensions (Palatinus, 2003). At the ®rst stage, the density was

projected along the fourth dimension to obtain an average 3D

density. This was then searched for positions of maxima. All

non-H atoms of the average structure could be located, while

only three spurious maxima had a peak density larger than the

weakest of the atoms. These false maxima were located in the

vicinity of the heavy atoms and were easy to identify and

remove. The noise could be probably further reduced by

averaging several electron densities obtained from different

starting phases, as proposed recently by Wu et al. (2004).

The list of the extracted maxima and their comparison with

the atomic parameters from the ®nal structure model is given

in Table 2. The coordinates of the heavy atoms agree with the

re®ned ones within 0.05 AÊ , the largest difference occurs for

the z coordinate of the atom C3, 0.28 AÊ . This can be consid-

ered to be a very good accuracy for an ab initio structure

solution, particularly for an average structure of a modulated

crystal. The chemical types can be assigned to individual

maxima on the basis of the integrated charge of each

maximum, as illustrated in Table 2. The charges determined

from the density were normalized to 52 electrons for the Te

atom. The normalized charges then allow an easy distinction

research papers
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Table 2
Atomic coordinates and integrated charges found for the average structure of tetraphenylphosphonium hexabromotellurate(IV) bis{dibromo-
selenate(I)} from charge ¯ipping and from the structure model.

The integrated charges were normalized to 52 electrons for the Te atom. The last column contains the number of electrons of each atom multiplied by the atom's
occupancy in the structure.

Charge ¯ipping Structure model
Integrated Electrons �

Atom x y z x y z charge occupancy

Te 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 52.0 52
Br1 0.5503 0.5000 0.2679 0.5490 0.5000 0.2680 32.6 35
Br2 0.6739 0.5772 0.5784 0.6730 0.5770 0.5738 31.1 35
Se1 0.8521 0.4479 0.4125 0.8525 0.4486 0.4141 13.6 17
Br4 0.9546 0.4788 0.2531 0.9563 0.4801 0.2556 18.0 17.5
Se2 1.0060 0.4086 0.5604 1.0054 0.4091 0.5582 13.7 17
Br5 1.0202 0.3212 0.4683 1.0214 0.3210 0.4712 13.5 17.5
P 0.0000 0.6904 0.0000 0.0000 0.6908 0.0000 10.1 15
C1 0.8708 0.6476 0.0145 0.8747 0.6465 0.0149 2.6 6
C2 0.8157 0.6523 0.1091 0.8195 0.6503 0.1200 2.6 6
C3 0.7175 0.6198 0.0986 0.7225 0.6151 0.1244 3.5 6
C4 0.6877 0.5796 0.0199 0.6835 0.5775 0.0303 4.7 6
C5 0.7244 0.5808 0.9447 0.7386 0.5736 0.9296 3.4 6
C6 0.8279 0.6071 0.9440 0.8348 0.6079 0.9202 3.9 6

Figure 1
Modulation functions of atoms Br1, Se1, Br5, P and C5 of tetraphenylphosphonium hexabromotellurate(IV) bis{dibromoselenate(I)}. Modulations
obtained by the analysis of the density from charge ¯ipping (full symbols) and by the analysis of the Fourier map of model structure factors (empty
symbols). Circles, squares and triangles denote modulation along x, y and z, respectively.
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between the Te, Se/Br, P and C atoms. The Se and Br atoms

cannot be distinguished because of their similar atomic

numbers. It can also be observed that the charges of the atoms

are systematically underestimated. This is a consequence of

the noise present in the map. The low-density regions, which

would be assigned to the atomic maxima in the noiseless

density, disappear in the noise and they are assigned to small

spurious maxima in the noise instead of the atomic maxima.

This effect is more pronounced for light atoms.

The low normalized charges in the average structure can

also be caused by the presence of an occupational modulation

in the modulated structure. In this example, this is the case for

atoms Se1, Se2, Br4 and Br5. This can complicate the proper

assignment of the chemical type in the average structure. The

occupational modulation can be determined by inspecting the

four-dimensional density in these cases, or ± most easily ± the

atomic type can be assigned on the basis of chemical knowl-

edge by inspecting the average structure in a crystal-structure

viewer.

Charge ¯ipping in superspace can also provide a starting

model for the modulation. In the presented example, the

program EDMA was used to extract the positions of the atoms

as a function of the internal coordinate t. The atomic positions

as a function of t can be used to obtain a starting model for the

modulation functions. Fig. 1 shows the modulation functions

of selected atoms as obtained by the charge ¯ipping algorithm

and from the Fourier map of structure factors calculated from

the ®nal re®ned model. The perfect agreement of the two

densities is illustrated in Fig. 2. The quality of the recon-

struction can be assessed also in reciprocal space by

comparing the phases estimated by the charge ¯ipping algor-

ithm with the model phases. Out of 4247 re¯ections in the

input data set, 4086 have phases identical with those obtained

from the ®nal structure model.

6. Conclusions

Charge ¯ipping in superspace proved to be a useful method

for ab initio structure solution of modulated structures from

X-ray diffraction data directly in superspace. The output of the

method is an approximate superspace electron density of the

structure that can be further analyzed for the positions of the

symmetry elements, the positions of the atoms and the shapes

of the modulation functions.

From eight modulated structures having up to 130 atoms in

the primitive cells, seven structures were successfully recon-

structed. Thus, the success is not granted in all cases but the

success rate is high. It should be emphasized that some of the

presented examples rank among the most complex modulated

structures described so far.

The structure analysis of tetraphenylphosphonium hexa-

bromotellurate(IV) bis{dibromoselenate(I)} has shown that

the charge ¯ipping algorithm produces a structure model with

errors in the atomic positions typically less than 0.1 AÊ . Such

a model represents a good starting point for the structure

re®nement.

For ordinary 3D structures, the charge ¯ipping algorithm

represents only one of several effective methods for ab initio

structure solution. Its importance for solution of modulated

structures is larger than for the 3D structures, as the gener-

alization of the algorithm towards superspace is easily

possible, while the usage of other methods for modulated

structures is limited. Thus, charge ¯ipping in superspace has a

potential to become a leading tool for ab initio solution of

modulated structures directly in superspace.
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